VPE+ Application Reporting Interface

Version 1.0.4

User Guide & Notes

Revision: September 2019

www.onlycode.nz

VPE+ Application Reporting Interface

”@5 Contents

Introduction
What is VPE-PIUS (VPE+) o o e e e 4
The Code-Based Approach 4
VPE+ RePOMNG Style o e e e 4
Application Interface Features e 4
What is Virtual Print Engine (VPE)? o e e 4
Important to Remember L 4
SUPPOIt . o e e 5
YOUr IMPrOVEMENTS o o e e e e 5
This User GUIAE o o e e 5
Installation 6
Sixty Seconds to YOUr FirSt ROt e 7
Extending Your First Report to use a Banded Page Frame 7
Where to From Here? 8
Overview
General OVEIVIEW e 9
VPE+ Report Interface: General
Default Interface Setup & Properties 10
System Page (Fixed) Band OULPUL 11
SyStem Setup FOIM 11
System Preview FOrmM 12
System Status FOIM L 12
Paper Orientation 12
Page NUMDEriNg. 13
Setting Fonts and Saving/Restoring FONTS o 13
Saving and Restoring Cursor POSItIONS. 14
UNnit CONVEISION o o ot e e e e e e e e e e e 14
Lines and BOXeSo 15
Image Management. 16
Line & Font Metrics
Cursor Position and Line/FOnNt MetriCs 18
Manipulating Cursor POSItION o e 19
FONt AlIGNMENt. . . . o o 19
Manipulating FONt Size 20
Re-Aligning the Cursor FONt L o 21
Report Execution
EXECUtiNg REPOIS. . . . o 22
Report GEneration PrOCESS o o o e e 22
Batched Reports
Executing Batched Reports 23
Other Batch Functions, Procedures & Properties. 23
Adding Existing Reportsto a BatCh 24
Setting Descriptions for Batched RepOrts 24
Report Runs
BUulk REPOIt RUNS 25
Output Devices
Device Management e e 26
Device Objects Maintained by DeviceManager 27
Error Control
Aborting Reports and Error Control 28
Error Control With RepOrt RUNS o e 28
Print Functions
General Print FUNCLIONS e 29
LiNe SPaCing o o 30
Line Tabs
LiNe Tabs . . . 31
Setting / Defining Line Tabs. o 31
OUIPUL IO LIiNE Tabs. o o e 32
Saving, Retrieving and Clearing Line Tabs 32
Tabh BUMPEIS . . o . o e 33
Tab Metrics & MIisSCellaneous 33
Text Blocks
Wrapping Text BIOCKS o 34
Text Block Definition 34
Text BIoCK OQULIPUL o o 35
Pre-Rendering TextBIOCKS. o e e 35
Other TTextBlock Properties and Methods e e 35
Synchronising Text Blocks to Tab Settings 35
RTF Blocks
Wrapping Rich TeXt BIOCKS o e e e 36

Page 2 of 62

VPE+ Application Reporting Interface

”@5 Contents

Line Tabs

RTF ON-the-Fly . . oo 36
ReportWriter: General

The Report Writer (TREPOIWWIITEr) e e e e e e e e e e e e e e e 37

Report Generation EVENLS o e 40

ReportWriter Setup EVENES 41

Email EVENt. . . . 41
ReportWriter: Custom Formats

CUSIOM FOMMALS o e e e e 42
Frames

Frames and Bands 43

Page Boundaries & Margins i e 43

Band Boundaries & Margins e 44

ASSESSING Band SPacCe. o 44

Usinga Remittance Band 45

Adjusting Bands "On the Fly" e 45

Band Properties and Behaviour 46

Page Frame MEtriCS 47
Page Frame

Page Frame 48
Master/Detail Frame

MaSter Frame 49

Detail Frame 49
Label Frame

Label Frame 50
Column Frame

ColUMN Frame 52

Printing Text Blocks t0 COIUMNS e 53
Arrows

Drawing ArfOWS . . . o o o o e e e e e e e e e 54
Text Rotation

Rotating a Line of TeXt o 56
Colour Shades

Colour Shades 57

Page 3 of 62

VPE+ Application Reporting Interface

”@5 Introduction

VPE Plus (VPE+) is a free Delphi VCL code-based reporting tool. It is built as an add-on to Virtual Print Engine (VPE) which is independently
licensed.

The Code-Based Approach

As a code-based tool, reports generated with VPE+ are implemented entirely in standard Delphi code, so:
> you are not tied to the constraints of automation often encountered in a visual designer
> there are no constraints on access to data sources, no need to "pipe" or "link" data into the report environment
> there are no constraints on access to code resources
> there are no constraints on how Delphi language features can be applied during report generation

This hands-on flexibility means you can pretty much code whatever is required to get the job done!

VPE+ Reporting Style

Generally, VPE+ adopts a banded style of reporting, although you are by no means limited to using bands at all. Fixed and dynamic bands
(page headers and footers, group headers and footers, report body bands etc etc) are implemented within "frame" components which provide a
flexible structure and flow to the report generation process.

Conceptually, a positional (x, y) cursor moves in synchrony with the various frames, bands and output functions so that sequential text elements
can be automatically and easily placed without explicit reference to positional coordinates. By the same token, x and/or y coordinates can be
specified with print functions if necessary, irrespective of the current cursor position. In addition, the cursor can be readily manipulated to
precisely and easily align text with respect to another object or the font metric of another text element anywhere on the page. Positionally, VPE+
is very precise.

Text is output either as single line (potentially clipped) strings, or as multi-line wrapping blocks. Horizontal tabs can be defined for single line
columnar style reports with optional surrounding boxes and background shading. For wrapping text blocks, text can be pre-rendered (without
actual output) to assess space requirements, and then incrementally output around other objects or wrapped across multiple pages. Rich text
(RTF) can be wrapped in a similar fashion.

Application Interface Features

More than just code-based report generation, however, VPE+ also provides customisable application integration features to manage the user
interface with support for:

> easy presentation of report setup parameters and options
> previewing, printing, filing, emailing of reports

> batching of multiple reports

> bulk report runs

> overridable setup, status and preview forms

and much more...

What is Virtual Print Engine (VPE)?

Virtual Print Engine is the underlying core of VPE+. It is a comprehensive cross platform Report Engine and PDF Library licensed and supported
by Ideal Software. To use VPE+ as a developer, you require a license for VPE Professional Edition, or you can use the free 30 day trial version
of this edition.

VPE+ is simply a wrapper for VPE, implementing it's own style of code-based, banded reporting with the Delphi VCL.

Note, in particular, that there are many more properties, methods and features in VPE beyond those directly wrapped or introduced by VPE+. It
is thus essential to become familiar with VPE to take full advantage of it when using VPE+.

Refer to the Ideal Software site (www.idealsoftware.com) for detailed documentation on VPE and its sister product dycodoc.

IMPORTANT TO REMEMBER:

Take particular care when mixing methods from VPE and VPE+ involving measurement units. The former uses centimetres as a default, the
latter uses millimetres as a default. VPE does not support millimetre units as such, so unless you synchronise the respective units to a common
value, you may need to use the unit conversion functions (AsVPEUnits, AsReportUnits, ConvertUnits) to integrate the two.

Page 4 of 62

VPE+ Application Reporting Interface

”@5 Introduction

SUPPORT

The VPE+ add-on is neither developed nor directly supported by Ideal Software. Please do NOT ask VPE+ support questions of Ideal Software,
or use their forums for this purpose!

VPE+ has been developed by Brent Rose. You can contact me via the "Contact" page at www.onlycode.nz.

While | will endeavour to answer any questions, please bear in mind that this is free software and | cannot guarantee the time to respond
immediately or to everyone at this stage.

G you do use VPE+, or are considering licensing a copy of VPE in order to use\
VPE+, please let me know (use the "Contact" page at www.onlycode.nz to introduce
yourself).

How much interest there is in VPE/VPE+ in this context is likely to determine the
future development course of VPE+, and may also impact on VPE. Your feedback is
welcome, and your contact details will NOT be used to send you unsolicited mail, or

Q)r any other purpose. /

YOUR IMPROVEMENTS

If you discover any issues with VPE+, resolve any bugs, make your own improvements, or have some constructive suggestions, please notify
me (via the "Contact" page at www.onlycode.nz) so that the project can benefit from your efforts. Thanks for trying VPE and VPE+.

THIS USER GUIDE:

This document is intended as a "brief reference guide" only. It is generated in code using VPE+ and grew as an exercise in testing its'
functionality, but is otherwise probably a somewhat clumsy way of going about compiling a manual! Nevertheless, there is a lot of useful
information here and browsing through it is a good way to gain familiarity with the scope and features of VPE+.

Another useful resource is the VPE+ demonstration application (VPEPlusDemo.exe) and its' source code. There are examples of many of the
key features of VPE+ included here. Obtain these resources and others from the website www.onlycode.nz.

Page 5 of 62

VPE+ Application Reporting Interface

”@5 Introduction

Installing VPE+:

Prerequisite: Install VPE Professional from Ideal Software. A 30 day trial is available.
Be sure the "<VPE Source Folder>\delphi" folder is included in the IDE Library Path.

To keep installation of VPE+ as versatile as possible, and allow you to readily make modifications to the code, only the source code files are
provided. You must build and install a component package in your IDE... but this is fairly straight forward. At this time, the installation has not
been tried with Delphi versions prior to XE2.

1. Extract the VPE+ source files to a component folder of your choice. eg \VPEPIus in your component installation folder.
The following (26) files should be present:

CONTACT.txt
GNU General Public License.html

some contact details
copy of freeware license file in html format

GNU General Public License.txt
HISTORY_VPEPLUS.txt
VPEPIlusRegister.pas
VPEPIlusRegister.res
VPEfPlusBatchOutput.dfm
VPEfPlusBatchOutput.pas
VPEfPlusBatchSetup.dfm
VPEfPlusBatchSetup.pas
VPEfPlusPageSelection.dfm
VPEfPlusPageSelection.pas
VPEfPlusPaperBinPrompt.dfm
VPEfPlusPaperBinPrompt.pas
VPEfPlusPreview.dfm
VPEfPlusPreview.pas
VPEfPlusSetup.dfm
VPEfPlusSetup.pas
VPEfPlusStatus.dfm
VPEfPlusStatus.pas
VPEuPlusColumnFrame.pas
VPEuUPIlusDevice.pas
VPEuUPIlusFrame.pas
VPEuPIlusLabelFrame.pas
VPEuUPIlusReporting.pas
VPEuPlusTextBlock.pas

copy of freeware license file in txt format

notes on version and change history

component registration unit

resource file for VPE+ components

form file for batched report selection and output form
code file for batched report selection and output form
form file for report batch print device selection form
code file for report batch print device selection form
form file for page range selection form

code file for page range selection form

form file for paper bin selection form

code file for paper bin selection form

form file for default report preview form

code file for default report preview form

form file for default report setup form

code form file for default report setup form

form file for default report status form

code file for default report status form

code file to output to "newspaper columns"

code file to manage report print devices & options
code file for banded report frame components

code file for the label printing frame

code file for core Reportinterface component and functionality
code file implementing the "text block" for plain text and rtf

2. Add the VPE+ component folder to your IDE Library Path.

3. From the IDE menu, select "Component, Install Component".
For "Units" select all (14) .pas files from the VPE+ base folder.
Check the radio button to "Install into a new package".

Click <Next>.

4. Define the new package.
Use Package Name = "VPEPIus", selecting a folder of your choice
Use Description = "VPE Plus Interface"
Click <Finish>.

5. Include additional files as prompted:
When asked to enable the "Visual Component Library" framework, click <Yes>.
When asked to add "vclimg" and "dbrtl", click <OK>.
There may be some variation with installs in different IDEs.
If asked to add VpevclXe2 (or later version) as well, click <OK>.

To remove warnings that VPE_VCL and VPEngine have been "implicitly imported”, find and add these (.dcu) files.
(Their location may vary from installation to installation.)

6. Compile error with "Debug Information” setting:

You may get an error with this setting when compiling the demo application under earlier IDEs where the "Debug information" setting is
a boolean value rather than the more recent enumerated type. See "Project Options, Delphi Compiler, Compiling" in the Debugging
group. Remove the numeric representation and reset the boolean value (as True). The compile error will look something like:

[MSBuild Error] "2" is an invalid value for the "Debuglnformation" parameter of the "DCC" task. The "Debuglnformation" parameter is of
type "System.Boolean".

Page 6 of 62

VPE+ Application Reporting Interface

”@5 Introduction

SIXTY SECONDS TO YOUR FIRST REPORT: (Well, maybe 3 minutes or so.)

Creating the following VCL project demonstrates how to quickly generate your first VPE+ report with a standard user interface setup form.

1. On the main form of a new VCL project place:

a) a TReportinterface component (default name Reportinterfacel)
b) a TReportWriter component (default name ReportWriterl)
c) a TButton component (default name Button1)

2. Execute the ReportWriter via the Reportinterface by adding to Button1.0nClick:
Reportinterfacel.ExecuteReport(ReportWriterl);
3. In ReportWriter1.OnConfigure, give the report a setup title & subtitle, disable email output, and turn off PageTitles (not used for now):

ReportWriter.ReportTitle := 'A Sample Report;
ReportWriter.ReportSubTitle := 'Testing";
ReportWriter.UsePageTitles := False;
ReportWriter.OptionDisallow(roCanEmail);

4. Add an output statement to ReportWriterl.OnGenerate:
Reportinterface.PrintPos(‘Hello World");
5. Run the application and click the button. Click the <Preview> button to preview the report.

As you can see from this simple application, you can also (in addition to previewing the report) select a print device and send the report to it, or
save the report to a file. By default, the only file output format available is PDF. We turned off the email output option because we have not
implemented the means to send a report by email in this case (per TReportWriter.OnSendEmail).

Note also that the report is overstamped with "Demo Version". This will be automatically printed until valid VPE license keys are entered in the
interface (see properties VPEInterfacel.VPELicenseKeyl and VPELicenseKey?2)

EXTENDING YOUR FIRST REPORT TO USE A BANDED PAGE FRAME:

From here, we can embellish the report a little by using a page frame to add a banded structure. We'll utilise the "system header/footer" page
title features which allow you to (optionally) implement a generic header and footer style for your reports.

1. On the main form, add:
a TPageFrame component (default name PageFramel)

2. Alter the configuration in ReportWriterl.OnConfigure, turning page titles ON:
ReportWriter.UsePageTitles := True;
(Or delete this statement since "True" is the default state.)

3. Add default page title values in ReportWriterl.OnConfigure (these will show up in the setup form):

ReportWriter.PageHeaderTitle := "My First Report';
ReportWriter.PageHeaderSubTitle := 'Quick Test';
ReportWriter.PageFooterTitle := 'Footer’;

4. Rather than print "Hello World" in ReportWriterl.OnGenerate (delete this statement), we'll execute the PageFramel instead:
PageFramel.Execute(ReportWriter);
5. Print "Hello World" in PageFramel.0OnRow, and end the frame loop by invalidating it:

Reportinterface.PrintPos(‘Hello World");
Valid := False;

6. Execute the system page header in PageFramel.OnPageHeader:
Reportinterface.PrintSystemPageHeader;
7. Execute the system page footer in PageFramel.0OnPageFooter:
Reportinterface.PrintSystemPageFooter;
8. Implement the "system page header" output in Reportinterfacel.OnSystemPageHeader (we'll just centre the title and subtitle):

with Reportinterface, ReportWriter do
begin
PrintPos(PageHeaderTitle, jCentre, BandCentreXPos, tsB);
NewlLine;
PrintPos(PageHeaderSubTitle, jCentre, BandCentreXPos, tsB);
end

Page 7 of 62

VPE+ Application Reporting Interface

”@5 Introduction

9. Implement the "system page footer" output in Reportinterfacel.OnSystemPageFooter (we'll centre the title and add a page number):
with Reportinterface, ReportWriter do
begin
PrintPos(PageFooterTitle, jCentre, BandCentreXPos);
PrintPos(Format('Page %d', [CurrentPage]), jRight, BandRight);
end

10. Run the application and click the button. Click the <Preview> button to preview the report.

WHERE TO FROM HERE?

There are, of course, many more features of VPE+ beyond this brief introduction!

As mentioned, check out the demonstration application which goes much further in showing the extent to which the default VPE+ setup form can
be customised, including presenting almost any set of user input parameters. You can even generate your own setup form to better suit your
purposes.

There is a "Categorical Index" of events, methods and properties at the end of this guide which serves as a brief indication and reminder of
available features. When manipulating fonts, the "Font Metrics" diagramme is useful (see the "Line & Font Metrics" section). When using Page,
Master, Detail, Label or Column Frames, the respective structure diagrammes in the "Frames" section are useful.

Information and code examples will continue to be added to the website, so check the site from time to time.

Remember, also, to refer to the VPE documentation from Ideal Software describing the full scope of the Report Engine from document
management to printing, layout, drawing and text functions, to bar codes, charts, and clickable objects etc...

Page 8 of 62

VPE+ Application Reporting Interface

”@5 Overview

General Overview

The Reportinterface component provides reporting infrastructure and interface between an application and the Virtual Print Engine (VPE).
Typically, a single Reportinterface component is used in an application, placed in a common DataModule.

A ReportWriter component (a descendant of the VPE TVPEnNgine) is placed on a form as the basis of a given report (or reports).

Reportinterface describes a "page" (or piece of paper) as the target of report output, within which is a printable area:

[— Paper

“—— Printable Area

Paper Boundaries & Printable Area

The printable area constitutes a "default band" in which you can output report elements (but does not strictly confine you to the printable area). A
virtual (XPos, YPos) cursor marks the default output position within the band, and moves according to report output or programmatic control.
However, the cursor is only a convenience, and in no way restricts output to the page using Reportinterface or VPE output methods.

L]
X cursor
xy)

Qutput Cursor Position

Optionally, Reportinterface can then logically structure this default band using a "framework” which imposes more detailed bands on the page
space and a cyclic control flow to progress through a report. The primary framework component is a PageFrame which introduces fixed header
and footer bands, and dynamic report body bands in between.

Fixed header bands Letterhead, PageHeader bands
Dynamic body bands BodyTitle, BodyHeader, GroupHeader band
Row band

BodyFooter, GroupFooter bands

Fixed footer bands Letterfoot, PageFooter, Remittance bands

Band Structure

In addition, further frames in the form of MasterFrame or DetailFrame components can be added and optionally nested to elaborate on the band
structure. A specialised frame, LabelFrame, generates mailing or other labels. Another specialised frame, ColumnFrame, facilitates output to
newspaper style columns.

Frames and bands and the properties that define and control their behaviour are described later in this guide.
More than just reporting structure, however, Reportinterface provides a great deal of versatile application functionality to support report setup,
preview, and output, including the ability to dynamically present custom report parameters to the user, batch reports, and manage bulk report

runs. Should requirements challenge this default interface, all key forms (setup, status, preview) can be overridden with your own custom forms.
Any number of such custom forms may be utilised in an application.

Page 9 of 62

VPE+ Application Reporting Interface

"E* VPE+ Report Interface (TReportinterface) General

Reportinterface is a component providing reporting infrastructure and interface between an application and the Virtual Print Engine (VPE).
Typically, a single Reportinterface component is used in the application, placed in a common DataModule. A ReportWriter component (a
descendant of the VPE TVPEnNgine) is placed on a form as the basis of a given report or reports.

Default Interface Setup & Properties

property ActiveReportFolder: string; Default folder to receive user report files.
By order of preference, this is taken from property DefaultReportFolder (see below).
If DefaultReportFolder is invalid or not specified, the folder is set in event OnGetReportFolder.
If no OnGetReportFolder event handler is assigned, the EXE folder is used.
NOTE: The ActiveReportFolder is calculated ONCE, and that value is retained.
Force a re-calculation by assigning any value (including blank) to DefaultReportFolder.

property ActiveTempFolder: string; Default folder to receive temporary report files.
By order of preference, this is taken from property DefaultTempFolder (see below).
If DefaultTempFolder is invalid or not specified, the folder is set in event OnGetTempFolder.
If no OnGetTempFolder event handler is assigned, the TEMP environment variable is used.
NOTE: The ActiveTempFolder is calculated ONCE, and that value is retained.
Force a re-calculation by assigning any value (including blank) to DefaultTempFolder.

property DefaultFixedBandEnabled Default fixed band enable states to be applied on report execution.
(The ReportWriter.FixedBandEnabled state, if not bsDefault, overrides these defaults.)
LetterfootEnabled: TDefaultBandState; default for UseLetterfoot state (default bsDisabled)

LetterheadEnabled: TDefaultBandState; default for UseLetterhead state (default bsDisabled)

PageFooterEnabled: TDefaultBandState; default for UsePageFooter state (default bsEnabled)

PageHeaderEnabled: TDefaultBandState; default for UsePageHeader state (default bsEnabled)
NOTE: Remittance band is disabled by default - enable it using EnableRemittance.
NOTE: FixedBand "Use" states can be overridden in ReportWriter.OnConfigure.

TDefaultBandState band states (subset of type TBandState)
bsDisabled band is disabled
bsEnabled band is enabled
property DefaultFixedBandHeights Default fixed band heights to be applied on report execution.
LetterfootHeight: Double; default for UseLetterfootHeight (default 10 mm)
LetterheadHeight: Double; default for UselLetterheadHeight (default 20 mm)
PageFooterHeight: Double; default for UsePageFooterHeight (default 10 mm)
PageHeaderHeight: Double; default for UsePageHeaderHeight (default 25 mm)
RemittanceHeight: Double; default for UseRemittanceHeight (default 20 mm)
NOTE: Override default band heights with the respective ReportWriter Band properties.
property DefaultFonts Defines a default font in 5 sizes for general use (optionally applied as saved fonts 1..5).
(overridden by ReportWriter.DefaultFonts where these are defined)
FontName: string; name of font to use (default = Arial)
Sizel to Size5: Integer; font sizes to use: defaults = Sizel (16), Size2 (14), Size3 (12), Size4 (10), Size5 (8)
call procedure SetDefaultFonts; to save as fonts 1..5 (eg in ReportWriter.OnConfigure)
property DefaultPageFooterStamp: string; optional "stamp" for use in the page footer - eg a company name (default none)
NB this global default is applied when TReportWriter.PageFooterStamp is not defined.
property DefaultPaperMargins Defines the default paper margins (override by calling SetPaperMargins)
Bottom: Double; sets bottom paper margin (default 10 mm)
Left: Double; sets left paper margin (default 15 mm)
Right: Double; sets right paper margin (default 15 mm)
Top: Double; sets Top paper margin (default 10 mm)
property DefaultReportDescription: string; Default report description (default = "Report") applied where ReportWriter.ReportDescription

is not provided. See ReportWriter.OnDescribeReport event for dynamic description changes.
The report description is used in setup and as the print spool job description.

property DefaultReportFolder: string; Default folder to receive user report files. See property ActiveReportFolder above.
Leave DefaultReportFolder blank to defer to the event OnGetReportFolder.
If no OnGetReportFolder event handler is assigned, the EXE path is used.

property DefaultTempFolder: string; Default folder to receive temporary report files. See property ActiveTempFolder above.
Leave DefaultTempFolder blank to defer to the event OnGetTempFolder.
If no OnGetTempFolder event handler is assigned, the TEMP environment variable is used.

property DefaultTitleSetup: string; default setup form caption (default = "Report Setup”, overridden by ReportWriter. TitleSetup)
property DefaultTitleStatus: string; default status form caption (default = "Report Status”, overridden by ReportWriter.TitleStatus)
property TagPreview: Integer; optional tag passed to a custom (override) preview form (eg for formatting or control options)
property TagSetup: Integer; optional tag passed to a custom (override) setup form (eg for formatting or control options)
property TagStatus: Integer; optional tag passed to a custom (override) status form (eg for formatting or control options)
property TitleSystem: string; system title (default = "Report System") - used for prompt titles and default report title

Page 10 of 62

VPE+ Application Reporting Interface

"E* VPE+ Report Interface (TReportinterface) General

property Units: TUnits; VPE+ report system units (UMM or uCM or uinch). Default is uMM.
NB This setting may differ from the units set for VPE (uCM or ulnch).
See the "Unit Conversion" topic below.

property UseEmbeddedFlagParser: Boolean; if True, a leading "[..]" in string output contains VPE format codes (default False)

property VPELicenseKeyl: string; VPE License Key #1 as provided by Ideal Software
property VPELicenseKey2: string; VPE License Key #2 as provided by Ideal Software
property VPEUnits: TVPEUnits; Units used by the underlying VPE system (uCM or Ulnch). Default is uCM.

NB This setting may differ from the units set for VPE+ (UMM or uCM or ulnch).
See the "Unit Conversion" topic below.

System Page (Fixed) Band Output

Four system print procedures can be used to execute generic fixed band output for letterheads, page headers, page footers and letterfoots.
These methods can be called from any report. An optional OptionTag allows instance specific formatting information to be passed to modify the
output accordingly.

The print procedures call matching Interface event handlers in which the output is implemented (see below).

procedure PrintSystemLetterhead(fires OnSystemLetterhead to print a system letterhead
OptionTag: Integer); an optional tag to pass formatting options

procedure PrintSystemPageHeader(> fires OnSystemPageHeader to print a system page header
OptionTag: Integer); an optional tag to pass formatting information

procedure PrintSystemPageFooter(> fires OnSystemPageFooter to print a system page footer
OptionTag: Integer); an optional tag to pass formatting information

procedure PrintSystemLetterfoot(> fires OnSystemLetterfoot to print a system letterfoot
OptionTag: Integer); an optional tag to pass formatting information

procedure OnSystemLetterhead(implements output for the generic system letterhead
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
ReportWriter: TReportWriter; ReportWriter generating the report
OptionTag: Integer); an optional tag to pass formatting information

procedure OnSystemPageHeader(implements output for the generic system page header
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
ReportWriter: TReportWriter; ReportWriter generating the report
OptionTag: Integer); an optional tag to pass formatting information

procedure OnSystemPageFooter(implements output for the generic system page footer
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
ReportWriter: TReportWriter; ReportWriter generating the report
OptionTag: Integer); an optional tag to pass formatting information

procedure OnSystemLetterfoot(implements output for the generic system letterfoot
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
ReportWriter: TReportWriter; ReportWriter generating the report
OptionTag: Integer); an optional tag to pass formatting information

System Setup Form

The default system setup form can be customised to handle a wide range of report options (or overridden altogether with another custom form -
see ReportWriter.OverrideSetup event).

Various report titles, headers and footers can be automatically displayed in the default setup form and edited by the user. Alternatively, your own
header/footer controls can be placed in a TGroupBox and passed to the form by assigning the box to property
ReportWriter.ReportTitleGroupBox.

Controls for any report parameters can similarly be placed in a TGroupBox and passed to the setup form by assigning the box to property
ReportWriter.ReportOptionGroupBox.

In both cases, the respective TGroupBox can be hidden (set Visible := False) on the local TForm in which the report code is located. The default
setup form will temporarily parent and show the TGroupBox allowing the user to manipulate all parameters.

See ReportWriter notes for further details.

property OverrideSetup(Allows an alternative setup form to be used during the report process.
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
ReportWriter: TReportWriter; ReportWriter generating the report
OverrideState: TOverrideFormState; indicates form state to implement: ofsFree, ofsCreate, ofsShow, ofsHide
var OverrideForm: TForm; the override form instance as created and returned when OverrideState = ofsCreate.
OptionTag: Integer); an optional tag to be used for setup options

Page 11 of 62

VPE+ Application Reporting Interface

"E* VPE+ Report Interface (TReportinterface) General

System Preview Form

The default system preview form implements a full range of VPE preview functionality. It is also capable of handling report batches (loading,
previewing, and outputting multiple reports collectively as a batch).

Standard VPE preview settings can be adjusted to control the appearance of the preview window. Set the ReportWriter.PreviewWindow
properties to control the basic layout of the preview window. The ReportWriter.OnPreviewConfigure event then allows further configuration as
required.

See ReportWriter notes for further details.

The preview form can be overridden altogether with another custom form using the Reportinterface.OverridePreview event:

property OverridePreview(Allows an alternative preview form to be used during the report process.
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
ReportWriter: TReportWriter; ReportWriter generating the report
OverrideState: TOverrideFormState; indicates form state to implement: ofsFree, ofsCreate, ofsShow, ofsHide
var OverrideForm: TForm; the override form instance as created and returned when OverrideState = ofsCreate.
OptionTag: Integer); an optional tag to be used for preview options

System Status Form

The default system status form is a simple display panel allowing progress and status messages to be displayed during report generation. Use
the procedures below to utilise the form.

The status form can be overridden altogether with another custom form using the Reportinterface.OverrideStatus event:

property OverrideStatus(Allows an alternative status form to be used during the report process.
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
ReportWriter: TReportWriter; ReportWriter generating the report
OverrideState: TOverrideFormState; indicates form state to implement: ofsFree, ofsCreate, ofsShow, ofsHide
var OverrideForm: TForm; the override form instance as created and returned when OverrideState = ofsCreate.
OptionTag: Integer); an optional tag to be used for status options

property StatusLabel: TLabel; target for Reportinterface status messages (per procedure DisplayStatus)

assigned in default status forms constructor,
or can be assigned in an override status forms constructor,
or can be assigned in ReportWriter.OnExecuted

procedure DisplayStatus(displays StatusString in the status form

StatusString: string); eg call in OnGenerateStart for a single report-wide status message.
procedure HideStatusForm; hides the status form
procedure ShowsStatusForm; shows the status form

Paper Orientation
Paper orientation can be changed by setting ReportWriter.PaperQOrientation, which reads or writes to VPE.PageOrientation.

Orientation can be set in advance in PageFrame.OnReportBefore, or changed in ReportWriter.OnPageStart (or elsewhere).

Page 12 of 62

VPE+ Application Reporting Interface

"E* VPE+ Report Interface (TReportinterface) General

Page Numbering

If using the "Page x of y" style of page numbering where the total number of pages must be known, or inserting/deleting pages during report
generation, page numbering may need to be applied AFTER the document is otherwise complete. By allowing you to maintain a list of page
number positions (XPos, YPos and justification) for each page generated, Reportinterface can retrospectively apply page numbering (eg in
TPageFrame.OnReportAfter).

Using the procedures listed below, it is your responsibility to synchronise the list with any changes made to the page structure. You can also
manipulate the final list before applying page numbers (eg to force alternate left/right justification).

NB Set ReportWriter.CurrentPage to go to a page, or read it to get the current page.

The following procedures are available to manage page numbering:

procedure AddPageNoPos(

X, Y: Double;

Adustify: TJustify = jRight);
procedure AddPageNoPosVoid;

procedure DeletePageNoPos(
APageNo: Integer);

procedure InsertPageNoPos(
APageNo: Integer,;
X, Y: Double;
Adustify: TJustify = jRight);
procedure InsertPageNoPosVoid(
APageNo: Integer);

procedure NumberPages(
AFormatString: string;

AFontindex): Integer;

function RetrievePageNoPos(
APageNo: Integer,
var X, Y: Double;
var AJustify: TJustify): Boolean;

adds a page number position to the page number list
the (X, Y) cursor position of the page number
justification for page number output

adds a page number flag indicating no page number should be output for this page

removes a page number position from the page number list
number of the page for which the page number position is to be deleted

inserts a page number position in the page number list
page number to which the page number position applies
the (X, Y) cursor position of the page number
justification for page number output

inserts a page number flag indicating no page number should be output for this page
page number to which the void page number position applies

numbers document pages at positions defined by page number list

formatting string used by the Format function to format the numbering string
can reference two parameters: the page number and/or total number of pages
eg "Page %d of %d", or "Pg %d"

indicates the saved font to use for numbering string output

retrieves page number position details, returning True if record exists

page number of the page number position record to retrieve (1..PageCount)

returns the (X, Y) cursor position of the page number position

returns the justification for the page numbering string

Setting Fonts (Name and Size) and Saving/Restoring Fonts

To allow font metrics to be correctly managed, avoid using the native VPE font setting procedures (SetFont, SetFontName, SetFontSize) as

these procedures effectively reset the font "behind the back" of the Reportinterface. Instead, use:

procedure FontSet(
AFontName: string;
AFontSize: Integer);

procedure FontSetName(
AFontName: string;

procedure FontSetSize(
AFontSize: Integer);

procedure PushFont;
procedure PushFont(
AFontindex: Integer);

procedure PopFont(
ResetLine: Boolean = False);

procedure PopFont(
AFontindex: Integer;
ResetLine: Boolean = False);

sets the cursor font and font size
the new font name
the new font size

cursor font changes, but current font size is retained
the new font name

cursor font size changes, but current font is retained
the new font size

saves font name and size to an (unlimited) LIFO stack

saves font name and size to an indexed location
indexed location to save to (1..10)

applies the last pushed font name and size from the LIFO stack
set True to make the popped font the new line font
(by default, current line metrics are retained)

applies font name and size from an indexed location

indexed location to retrieve from (1..10)

set True to make the popped font the new line font
(by default, current line metrics are retained)

Page 13 of 62

VPE+ Application Reporting Interface

"E* VPE+ Report Interface (TReportinterface) General

Saving and Restoring Cursor Positions

Cursor positions are defined by an X and Y coordinate. The X coordinate indicates the current horizontal print position, and is advanced as text
is output. The Y coordinate indicates the current vertical print position, and represents the top of the current line.

procedure PushPos;

procedure PushPos(
ACursorindex: Integer);

procedure PopPos;

saves the cursor position to an (unlimited) LIFO stack

saves the cursor position to an indexed location
indexed location to save to (1..10)

applies the last pushed cursor position from the LIFO stack

applies the cursor position from an indexed location
indexed location to retrieve from (1..10)

procedure PopPos(
ACursorindex: Integer);

returns the X coordinate of a cursor position previously saved by PushPos(ACursorindex)
indexed location of saved cursor (1..10)

function SavedXPos(
ACursorindex: Integer): Double;

returns the Y coordinate of a cursor position previously saved by PushPos(ACursorindex)
indexed location of saved cursor (1..10)

function SavedYPos(
ACursorindex: Integer): Double;

function MinSavedXPos(returns the least X coordinate from cursor positions saved by PushPos(ACursorindex)
ACursorindexSet: TCursorindexSet): Double; the set of saved cursor indexes (1..10) to include (default [] for ANY cursor)

function MinSavedYPos(

returns the least Y coordinate from cursor positions saved by PushPos(ACursorindex)

ACursorindexSet: TCursorindexSet): Double; the set of saved cursor indexes (1..10) to include (default [] for ANY cursor)

function MaxSavedXPos(

returns the greatest X coordinate from cursor positions saved by PushPos(ACursorindex)

ACursorindexSet: TCursorindexSet): Double; the set of saved cursor indexes (1..10) to include (default [] for ANY cursor)

function MaxSavedYPos(

returns the greatest Y coordinate from cursor positions saved by PushPos(ACursorindex)

ACursorindexSet: TCursorindexSet): Double; the set of saved cursor indexes (1..10) to include (default [] for ANY cursor)
Unit Conversion
VPE+ supports measurement units in millimetres (default), centimetres, or inches. This is set in property TReportinterface.Units (uMM, uCM, or
ulnch). The underlying VPE may be set to use either centimetres or inches in property TReportinterface.VPEUnits (uCM or ulnch). VPE does

not support millimetre units.

Thus, unit conversion is necessary where the unit settings of VPE and VPE+ do not match. Take care passing VPE+ units to VPE functions and
procedures, and reading VPE measurements back to VPE+. Use the following functions to convert units:

TUnits
uMM
uCM
ulnch

function AsReportUnits(
Value: Double): Double;

function AsVPEUnits(
Value: Double): Double;

function ConvertUnits(
Value: Double;
FromUnits, ToUnits: TUnits): Double;

available measurement units
millimetres (default)
centimetres

inches

converts VPE units to VPE+ "report" units.
value to convert
converts VPE+ units to VPE "native" units.
value to convert

converts from one unit type to another.
value to convert
source and target unit type, TUnits = (UMM, uCM, ulnch);

Page 14 of 62

VPE+ Application Reporting Interface

FE*

VPE+ Report Interface (TReportinterface) General

Lines and Boxes

procedure DrawHLine(
FromXPos, ToXPos: Double;
LineYPos: Double = NA;
APenWidth: Double = NA;
APenColour: TColor = NA;
APenStyle: TVPEPenStyle = psSolid);

procedure DrawVLine(
FromYPos, ToYPos: Double;
LineXPos: Double = NA;
APenWidth: Double = NA;
APenColour: TColor = NA;
APenStyle: TVPEPenStyle = psSolid);

procedure DrawLine(
FromXPos, FromYPos,

ToXPos, ToYPos: Double;
APenWidth: Double = NA;
APenColour: TColor = NA;
APenStyle: TVPEPenStyle = psSolid);

procedure DrawBox(
ALeft, ATop, ARight, ABottom: Double;
ACornerRadius: Double = NA;
APenWidth: Double = NA,;
APenColour: TColor = NA;
APenStyle: TVPEPenStyle = psSolid;
ABrushColour: TColor = cINone);

procedure DrawEllipse(
ALeft, ATop, ARight, ABottom: Double;
APenWidth: Double = NA;
APenColour: TColor = NA;
APenStyle: TVPEPenStyle = psSolid;
ABrushColour: TColor = cINone);

prints a horizontal line

specifies the left and right extent of the line

vertical position (YPos) of line, default = NA = current YPos

pen width to use (default = NA = pwNormal = 0.3 mm)

pen colour to use (default = NA = clBlack)

pen style to use: psSolid (default), psDash, psDot, psDashDot, psDashDotDot

prints a vertical line

specifies the top and bottom extent of the line

horizontal position (XPos) of line, default = NA = current XPos

pen width to use (default = NA = pwNormal = 0.3 mm)

pen colour to use (default = NA = cIBlack)

pen style to use: psSolid (default), psDash, psDot, psDashDot, psDashDotDot

prints a line between any two points

specifies the (x, y) from-point of the line

specifies the (x, y) to-point of the line

pen width to use (default = NA = pwNormal = 0.3 mm)

pen colour to use (default = NA = cIBlack)

pen style to use: psSolid (default), psDash, psDot, psDashDot, psDashDotDot

draws a box using the specified pen and brush, with rounded corners

defines the box corners

defines the radius of corner rounding (default = NA, or O = no rounding)

pen width for box lines (default = NA = pwNormal = 0.3 mm)

pen colour for box lines (default = NA = cIBlack)

pen style to use: psSolid (default), psDash, psDot, psDashDot, psDashDotDot
background brush colour (default = cINone = transparent)

draws an ellipse using the specified pen and brush

defines the box corners bounding the ellipse

pen width for ellipse line (default = NA = pwNormal = 0.3 mm)

pen colour for ellipse line (default = NA = clBlack)

pen style to use: psSolid (default), psDash, psDot, psDashDot, psDashDotDot
background brush colour (default = cINone = transparent)

Page 15 of 62

VPE+ Application Reporting Interface

"E* VPE+ Report Interface (TReportinterface) General

Image Management

Images can be output from files or from streams. Streams will use more memory, being stored in the application as well as copied into an open
VPE document. Thus, for large images or many images, a file based approach may be more efficient.

Reportinterface helps manage image files by allowing you to register images in a file list. Image registration allows you to re-use the image, and
also computes image height and width (where available) for scaling purposes. Images are output using the Drawlmage method. Overloaded
versions allow you to output an image directly from a file or stream, or to output (and re-use) an image from the maintained image file list.

To add an image to a list, call an appropriate overloaded version of Registerimage which returns the index of the image in the list.

The image list is automatically cleared and any temporary files deleted as appropriate after each report has completed UNLESS you call the
method RetainlmagelList some time during report execution. Doing so allows you to re-use the same image list for a subsequent report. If you
retain an image list, it is your responsibility to free the list by calling ClearimageList. Ensure this is done outside the scope of report execution to
avoid the risk of deleting image files BEFORE a report is fully written to the relevant output stream.

You can permanently retain one or more images at the start of the image list by calling LocklmageList once those images are registered. Doing
so prevents the currently registered images being removed when ClearimagelList is called, but allows subsequent images to be added and
removed as usual. Effectively, these images are thus available as "global" images, so you can retain a repeatedly used report logo image, for
example, across any report generated in the application. To remove the lock, call UnlockimageList which then allows ClearimageList to remove
ALL registered images.

NOTE: ClearlmagelList is otherwise only called automatically when the Reportinterface is destroyed, in which case UnlockimageList is
automatically called first.

NOTE: VPE also maintains an internal image cache which allows images to be efficiently re-used within the same report or across multiple
reports as required. In VPE+, this cache is flushed by default after each report. If you wish to retain the cache, call the method
RetainimageCache some time during report execution. To manually flush the cache, call FlushimageCache outside the scope of report
execution.

function Registerimage(registers an existing image file in the image list
AFileName: string; full name of an existing image file
AKind: TimageKind,; the kind of image contained in the file (see TiImageKind below)
ATempFile: Boolean; True if the image file is temporary and should thus be deleted afterwards
APixelHeight: Integer = 0; the height in pixels of the image (optional - can be used to scale images)
APixelWidth: Integer = 0): Integer; the width in pixels of the image (optional - can be used to scale images)

returns the index of the image in the list

function Registerimage(registers an image from a database field in the image list
AField: TField; the database field containing the image
AKind: TimageKind): Integer; the kind of image contained in the field (see TImageKind below)

returns the index of the image in the list
NB Only image types for which Delphi has a specific "image object" are recognised
(these are ikBMP, ikEMF, ikGIF, ikICO, ikJPG, ikPNG and ikWMF)

function Registerimage(registers an image from an application resource file
AResourceName: string); name of resource
AKind: TimageKind): Integer; the kind of image contained in the field (see TImageKind below)

returns the index of the image in the list

NB Height & width is read from image types for which Delphi has a specific "image object".
(these are ikBMP, ikEMF, ikGIF, ikICO, ikJPG, ikPNG and ikWMF)

Other resource types are streamed directly to file without height and width details.

TIimageKind ikAuto - used when file extension is not indicative of the image type (must read from file header)
ikBMP, ikJPG, ikWMF, ikEMF, ikTIFF, ikGIF, ikPCX, ikPNG, ikICO, ikING, ikKOALA, ikIFF,
ikMNG, ikPBM, ikPBM_RAW, ikPCD, ikPGM, ikPGM_RAW, ikPPM, ikPPM_RAW, ikRAS,
ikTARGA, ikWBMP, ikPSD, ikCUT, ikXBM, ikDDS, ikHDR, ikFAX_G3, ikSGI

procedure ClearlmagelList; clears all images from the image list (deleting temporary files as appropriate)
only call this procedure OUTSIDE the report execution process
procedure LockimagelList; locks currently registered images, preventing them from being removed by ClearimageList.

use this feature to retain "global" images used repeatedly
subsequently registered images are not locked unless LocklmagelList is called again

procedure RetainlmagelList; stops the Reportinterface image list being cleared after a given report.
call any time during the report execution process
procedure FlushimageCache; flushes the VPE image cache

only call this procedure OUTSIDE the report execution process

Page 16 of 62

VPE+ Application Reporting Interface

FE*

VPE+ Report Interface (TReportinterface) General

procedure RetainlmageCache;

procedure UnlocklmagelList;

function ImageAtindex(
Imagelndex: Integer): TImageMarkerPtr;

TImageMarker = record
ImageFileName: string;
IsTemporary: Boolean;
ImageKind: TImageKind;
PixelHeight: Integer;
PixelWidth: Integer;

end;

function ImageAspect(
Imagelndex: Integer;
ASize: Double;
ScaleAspect: TImageAspect): Double;

function CreateVPEStream(
AField: TField): TVPEStream;

function CreateVPEStream(
AStream: TStream): TVPEStream;

procedure CreatelmageFile(
AField: TField;
AKind: TimageKind;
AFileName: string;
out ImageHeight, ImageWidth: Integer);

procedure Drawlmage(
Imagelndex: Integer;
ALeft, ATop, ARight, ABottom: Double;

AFramePenWidth: Double = 0);

procedure Drawlmage(
AFileName: string;
AKind: TiImageKind,;
AlLeft, ATop, ARight, ABottom: Double;

AFramePenWidth: Double = 0);

procedure Drawlmage(
AField: TField;
AKind: TimageKind,;
ALeft, ATop, ARight, ABottom: Double;

AFramePenWidth: Double = 0);

procedure Drawlmage(
AStream: TStream;
AKind: TimageKind;
ALeft, ATop, ARight, ABottom: Double;

AFramePenWidth: Double = 0;

stops the VPE image cache from being flushed after a given report.
call any time during the report execution process

unlocks the image list, allowing ClearlmageList to remove ALL images.

returns a pointer to the image marker (TImageMarker) for the specified image
index of required image in image list

structure marking each image registered in the list

full name of an existing image file

True if the image file is temporary and should thus be deleted afterwards
the kind of image contained in the file (see TImageKind above)

the height in pixels of the image (optional - can be used to scale images)
the width in pixels of the image (optional - can be used to scale images)

given a height or width (ASize), returns the width or height according to the aspect ratio
the index of the image in the image list
the size by which to scale the image (either height or width)
the aspect required as the result (saReturnHeight or saReturnWidth)
only works if a valid TImageMarker height and width are specified for the image

creates and returns a TVPEStream derived from AField
the field source for the image

creates and returns a TVPEStream derived from AStream
the (non-VPE) stream source for the image

creates an image file from a AField

the field source for the image

the kind of image to be saved

a filename for the image

the image height and width where this can be determined

draws the image indicated by Imagelndex in the Rect specified
the index of the image in the image list
the image bounds
negative ARight or ABottom values define an actual width or height
"NA" causes ARight or ABottom to be calculated according to the aspect ratio.
pass a non-zero pen width to draw a frame around the image

draws the image from AFileName in the Rect specified
the image filename
the kind of image contained in the file
the image bounds
negative ARight or ABottom values define an actual width or height
"NA" causes ARight or ABottom to be calculated according to the aspect ratio.
pass a non-zero pen width to draw a frame around the image

draws the image from AField in the Rect specified
the image field name
the kind of image contained in the file
the image bounds
negative ARight or ABottom values define an actual width or height
"NA" causes ARight or ABottom to be calculated according to the aspect ratio.
pass a non-zero pen width to draw a frame around the image

draws the image from AStream in the Rect specified
the image stream
the kind of image contained in the file
the image bounds
negative ARight or ABottom values define an actual width or height
"NA" causes ARight or ABottom to be calculated according to the aspect ratio.
pass a non-zero pen width to draw a frame around the image

NOTE: Drawlmage for AField and AStream are useful for once-only streamed image output. They create and free a TVPEStream which cannot
therefore be re-used in the VPE image cache. To persist and re-use image streams, create your own VPEStream using CreateVPEStream, and
output them with overloaded Drawlmage for CPEStream. If using multiple image streams, be aware that large amounts of memory may be used.
Consider using file based images instead.

NOTE: If the VPE property PictureBestFit is True (default is False) and all four coordinates are specified, the image will be scaled to the

maximum size fitting within the defined Rect according to the aspect ratio. Otherwise, the VPE property PictureKeepAspect (default True)
controls whether the aspect ratio is honoured, or the image is stretched.

Page 17 of 62

VPE+ Application Reporting Interface

"E* VPE+ Report Interface (TReportinterface) Line & Font Metrics

Reportinterface maintains a line cursor position while printing, located at point (XPos, YPos).

Print functions generally advance the horizontal cursor position (XPos) by the width of the text printed, but maintain the same vertical position
(YPos) used for output. With multi-line output (TextBlocks), the final YPos will reflect the last line output, and whether the block is set to finish on
a new line or not.

By default, YPos corresponds to LineTop, but increasing line spacing by setting LineSpaceTop will displace LineTop downward by that value
(and similarly the other positional line metrics) while leaving the cursor YPos unchanged. Setting LineSpaceBottom has no impact on these
values for the current line, but displaces the next line further downward.

Note that the value of LineHeight depends only on the applied FONT - it does NOT change with increased line spacing (which is extra space
applied above or below the "font line"). A call to NewLine, however, will advance YPos by the sum of LineSpaceTop + LineHeight +
LineSpaceBottom.

For the purpose of the examples below, we are assuming that default line spacing is applied (ie both LineSpaceTop and LineSpaceBottom are
zero). The line and font metrics are:

YPos
X LineSpaceTop (default = 0)
LineTop
FontTop

LineHeight AscentHeight

LineMiddle FontMiddle

DescentHeight] FontBaseline

LineBottom . FontBottom

LineSpaceBottom (default = 0)

The font applied at the start of a line (the "line font") determines how far YPos is advanced with a call to NewLine, rather than any subsequent
font that may be applied at the cursor (the "cursor font").

This means that if a change is made to a larger font, say, that font will overrun the extent of the line currently recognised by Reportinterface as
shown here:

LineTop

Text Text .
Next line here... LineBottom

To correctly encompass the full extent of the largest font used in this line, call ResetLineHeight while that font is applied. The current LineHeight
will then reflect the LineHeight of the current cursor font. Alternatively, call ResetLineFont to change the font marked as the "line font" (and
hence the LineHeight as well). The result is:

LineTop

Text Text Text TeXt TeXt TeXt TeXt TeXt Text Text Text Text

Next line here...

LineBottom

Notice that each "Text" word, although aligned correctly to a common YPos with respect to its own line metrics, is not aligned evenly with
adjacent "Text" words (ie the top of each word varies from font to font). To align the words by, say, FontTop, mark FontTop with the first font,
and then reset FontTop to this value for each new font assigned giving:

LineTop

Text Text Text Text Text TeXt TeXt Text Text Text Text Text

Next line here...

LineBottom

Finally, because the "Text" words in larger fonts have effectively been raised in position to align FontTop with the original line font, there is an
extra gap between the baseline of the largest words and the bottom of the line. To close this gap, mark the LineBottom position after printing the
largest words (so the gap will be appropriate to this font and its adjusted position), then re-instate it at the end of the line when the font is
correctly set for the next line (eg set LineBottom to a "MarkedLineBottom"). Now, before calling NewLine, call ResetLineHeight to ensure a
LineHeight feed suitable for the new font. The next line will now be positioned appropriately below the largest font used:

LineTop

Text Text Text Text Text Text Text Text Text Text Text Text

Next line here...

LineBottom

NOTE: Font and line metrics are fairly logical and predictable, but manipulating text placement can get confusing, especially when some
positional function calls force changes in these metrics that may not have been anticipated. Generally, this becomes an exercise in being aware
of what cursor position, font and line height are active at any given time, and the impact of your code on line metrics.

Page 18 of 62

VPE+ Application Reporting Interface

FE*

VPE+ Report Interface (TReportinterface) Line & Font Metrics

Manipulating Cursor Position:

procedure AdvanceXPos(
Advance: Double);

procedure AdvanceYPos(
Advance: Double);

procedure CursorHome;
procedure CursorlLetft;
procedure CursorTop;

procedure CursorTo(
X,
Y: Double);

procedure NewLine(
LineCount: Integer = 1);

procedure NewPage;
property XPos;
property YPos;

Manipulating Lines and Font Alignment:

TLineMetric

function AscentHeight: Double;

function AscentHeight(
AFontindex: Integer): Double;

function CapitalHeight: Double;

function CapitalHeight(
AFontindex: Integer): Double;

function DescentHeight: Double;

function DescentHeight(
AFontindex: Integer): Double;

function LineHeight: Double;

function LineHeight(
AFontindex: Integer): Double;

function RenderedLineHeight: Double;

function TextWidth(
Text: string;
TextStyle: TTextStyle = tsNormal): Double;

procedure ResetLineHeight;
procedure ResetLineFont;

property FontTop;
property FontMiddle;
property FontBaseline;
property FontBottom;
property LineTop;
property LineMiddle;
property LineBottom;

advances the X (horizontal) position of the cursor
distance to advance the cursor X position

advances the Y (vertical) position of the cursor
distance to advance the cursor Y position

restores the cursor position to the top left of a band
restores the cursor position to the left of a band
restores the cursor position to the top of a band

resets the cursor position
new cursor X position (XPos)
new cursor Y position (YPos)

advances the cursor position to the beginning of a subsequent line
number of lines to advance the cursor (default = 1)

begins a new page
sets or returns horizontal position of cursor
sets or returns vertical position of cursor (equates to LineTop)

represents the available font metrics (refer to font metric diagramme above)

ImFontTop, ImFontMiddle, ImFontBaseline, ImFontBottom,
ImLineTop, ImLineMiddle, ImLineBottom

returns the ascent height for the cursor font

returns the ascent height of a saved font
index of saved font (1..10)

returns the capital height for the cursor font

returns the capital height of a saved font
index of saved font (1..10)

returns the descent height for the cursor font

returns the descent height of a saved font
index of saved font (1..10)

returns the line height for the cursor font

returns the line height of a saved font
index of saved font (1..10)

renders a cursor font test character and returns its line height
(used internally - use LineHeight to return the already calculated value)

returns the width of a string using the current font
the text to measure
font style to apply (default = tsNormal)

forces LineHeight to reflect height of currently applied (cursor) font
(rather than that of the "line font" applied at the beginning of the line)

forces the currently applied (cursor) font to be regarded as the line font
(calls ResetLineHeight)

returns vertical position of fonts top extent

returns vertical position of fonts middle point

returns vertical position of fonts baseline

returns vertical position of fonts bottom extent (equals LineBottom)
returns vertical position of lines top extent (equals YPos)

returns vertical position of lines mid-point

returns vertical position of lines bottom extent (equals FontBottom)

Page 19 of 62

VPE+ Application Reporting Interface

FE*

VPE+ Report Interface (TReportinterface) Line & Font Metrics

Manipulating Font Size:

function FontSizeFitHeight(
AFontName: string;
AFontFit: TFontFit;
ffReduceToFit
ffincreaseToFit
ffLargestFit
StartFontSize: Integer;
AFitHeight: Double;
RejectOddFontSize: Boolean): Integer;

function FontSizeFitWidth(
AFontName: string;
AFontFit: TFontFit;
ffReduceToFit
ffincreaseToFit
ffLargestFit
StartFontSize: Integer;
PrintStr: string;
AFitWidth: Double;
RejectOddFontSize: Boolean): Integer;

returns a font size to fit a font to a given AscentHeight
the font to test

the fitthg mechanism to apply

if larger, reduce font size until fits (no increasing)

if smaller, increase font size to largest fit (no decreasing)
increase or decrease font size to largest fit

the initial font size to test with

the AscentHeight to fit to

True to only test/return even font sizes (default= True)

returns a font size to fit a string to a given width

the font to test

the fittng mechanism to apply

if larger, reduce font size until fits (no increasing)

if smaller, increase font size to largest fit (no decreasing)
increase or decrease font size to largest fit

the initial font size to test with

the text to fit

the width to fit the text to

True to only test/return even font sizes (default= True)

Page 20 of 62

VPE+ Application Reporting Interface

FE*

VPE+ Report Interface (TReportinterface) Line & Font Metrics

Re-Aligning the Cursor Font:

The cursor position can be adjusted to place text relative to other objects or text elements. However, care is sometimes needed when using
these manipulations to avoid unexpected results.

In particular, remember that font line metrics (LineTop, LineMiddle, LineBottom, FontTop, FontMiddle, FontBaseline, FontBottom) are relative to
a given vertical position. Usually this is the current YPos (default), although you can specify any reference position when re-aligning text
(BaseYPos in the methods below). Resetting YPos or calls to methods like NewLine and AdvanceYPos, will, of course, directly move the YPos,
but so too will calls to the "AlignTo" methods. The PrintPos method does NOT change the YPos. Given the same YPos, changing the font or font
size changes the relative line metrics, while setting LineSpaceTop displaces them all accordingly. There can be quite some potential for

confusion!

These procedures realign the cursor font, moving the cursor position accordingly:

procedure AlignToCursorFont(
AlignBy,
AlignTo: TLineMetric;
BaseYPos: Double = NA): Double;

procedure AlignToLineFont(
AlignBy,
AlignTo: TLineMetric;
BaseYPos: Double = NA): Double;

procedure AlignToSavedFont(
AFontindex: Integer;
AlignBy,
AlignTo: TLineMetric;
BaseYPos: Double = NA): Double;

procedure AlignToYPos(
AlignBy: TLineMetric;
YAlignTo: Double);

aligns a cursor font metric to another cursor font metric

cursor font metric to align by

cursor font metric to align to

vertical reference position or origin (default = NA = current YPos)

aligns a cursor font metric to a font metric of the line font

cursor font metric to align by

line font metric to align to

vertical reference position or origin (default = NA = current YPos)

aligns a cursor font metric to the font metric of a saved font
index of saved font (1..10) to align to

cursor font metric to align by

saved font metric to align to

vertical reference position or origin (default = NA = current YPos)

to align a cursor font metric at a given vertical position
cursor font metric to align by
vertical position (YPos) to align to

These functions return the YPos required to realign the cursor font (without moving the cursor position):

function YPosAlignToCursorFont(
AlignBy,
AlignTo: TLineMetric;
BaseYPos: Double = NA): Double;

function YPosAlignToLineFont(
AlignBy,
AlignTo: TLineMetric;
BaseYPos: Double = NA): Double;

function YPosAlignToSavedFont(

AFontindex: Integer;

AlignBy,

AlignTo: TLineMetric;

BaseYPos: Double = NA): Double;
function YPosAlignToYPos(

AlignBy: TLineMetric;

YAlignTo: Double): Double;

returns the YPos that aligns a cursor font metric to a metric of the cursor font

cursor font metric to align by
cursor font metric to align to
vertical reference position or origin (default = NA = current YPos)

returns the YPos that aligns a cursor font metric to a metric of the line font
cursor font metric to align by

line font metric to align to

vertical reference position or origin (default = NA = current YPos)

returns the YPos that aligns a cursor font metric to a metric of a saved font
index of saved font (1..10) to align to

cursor font metric to align by

saved font metric to align to

vertical reference position or origin (default = NA = current YPos)

returns the YPos that aligns a cursor font metric to a given vertical position
metric to align by
vertical position (YPos) to align to

Page 21 of 62

VPE+ Application Reporting Interface

& VPE+ Report Interface (TReportinterface) Report Execution

Executing Reports

A given report is based on a locally placed ReportWriter component which is passed to the Reportinterface procedure ExecuteReport together
with a TSetupMode. Reports may also be generated as a batch, or existing reports added to a batch and then previewed or output collectively.

procedure ExecuteReport(

AReportWriter: TReportWriter; ReportWriter component used to generate the report
ASetupMode: TReportSetupMode = smSetup; the setup mode controlling how the report is generated (default = smSetup)
AFormatindex: Integer = 0; index to identify a custom format when ASetupMode = smCustomFile (default = 0)
AReportTag: Integer = 0; optional tag to identify a given report (default = 0)
TReportSetupMode to specify how to go about generating the report
smSetupRepeat display setup form prompt prior to generating report, repeat cycle until user cancels
smSetup display setup form prompt prior to generating report (default)
smPDFFile direct output to PDF file
sSmHTMLFile direct output to HTML file
smXMLFile direct output to XML file
smODTFile direct output to ODT file
smVPEFile direct output to VPE file
smCustomFile direct output to custom file (identified by AFormatindex)
smEmailPDFFile direct output to PDF file email
smEmailHTMLFile direct output to HTML email
smEmailXMLFile direct output to XML email
smEmailODTFile direct output to ODT email
smEmailVPEFile direct output to VPE email
smEmailCustomFile direct output to custom file (identified by AFormatindex) email
smPreview show the report in preview
smPrinter send the report directly to the printer or output device

Report Generation Process:

The general sequence of events for generatign a report is:

1. System Configuration
Configure and adjust Reportinterface or ReportWriter settings prior to report generation in ReportWriter event OnConfigure;
NB The VPE document is NOT open at this point, and cannot be referenced until OnGenerateStart fires. It is closed after OnGenerateEnd.

2. Status Form Display
The status form (if required) is created so that status messages may be displayed per Reportinterface.StatusLabel.

3. Setup Form Display
The setup form is processed (if required)
ReportWriter events OnSetupBefore, OnSetupValidate, OnSetupAfter allow setup configuration, validation, and acceptance/rejection.
Read the setup state from properties SelectedSetupAction, SelectedSetupMode, SelectedFormat and SelectedFormatindex.

4. Generate Report
ReportWriter events OnGenerateStart, OnGenerateEnd demarcate the generation process (VPE document is open during this phase).

ReportWriter event OnCustomFormatGenerate handles custom format generation.
ReportWriter event OnGenerate handles VPE generation - report code started here.
NOTE: Use the generate Start/End events to start & end data transactions as they still fire on report exceptions..

5. Cycling Report Setup
If smSetupRepeat mode is used, report setup and generation is repeated until the user cancels.

Page 22 of 62

VPE+ Application Reporting Interface

& VPE+ Report Interface (TReportinterface) Batched Report Execution

Executing Batched Reports

A report batch allows you to manage multiple reports collectively. For example, you can allow the user to multi-select individual reports for output
or emailing, change the format of a given report, and have reports of different formats within the same batch.

Any report may be generated as part of a batch, or existing reports added to a batch. The end user can add reports to a batch by opening
existing files while in Preview. Reports may be added in code by using the ReportBatch.Add method.

Only reports using the native VPE file format can actually be previewed in the default preview form, but any other file format (text, HTML, PDF
etc) may still be included in a batch. A non-VPE format will simply show in preview with an "unable to preview" message. Of course, it is quite
possible to design your own custom preview form which DOES display other formats if you wish (eg by allowing a text file to be displayed in a
memo component, or integrating a third party PDF viewing component etc).

Multiple reports are generated by calling ExecuteBatchReport for each report. Initially, a VPE report is always sent to a temporary file. By
passing a SetupMode specifying a file-format to this method (eg smPDFFile), you set the default target format should the report be subsequently
exported. With any other SetupMode, the ReportWriter.OutputDefaultFormat will be applied instead. For a custom format, pass smCustomFile
with the appropriate Formatindex.

An initial "batch setup only" prompt (using the standard setup form) can be presented by calling BatchSetup. This allows the user to provide
report parameters and output selection. NO actual output is performed - it is a prompt only. Read the users response via the properties
SelectedSetupAction, SelectedSetupMode, SelectedFormat and SelectedFormatindex. Reports may then be generated accordingly with calls to
ExecuteBatchReport.

Having generated a report batch, use BatchOutput to handle collective output. Custom report files can be filed or emailed, but not previewed or
printed unless you provide a suitable means to do so. BatchOutputPrompt can be used to prompt the user for (and execute) an output option for
any selection of reports included in the batch.

IMPORTANT: All batches must be closed with a call to BatchClose to clean up temporary files and allocated batch resources.

procedure ExecuteBatchReport(

AReportWriter: TReportWriter; ReportWriter component used to generate the report(s)
ASetupMode: TBatchSetupMode; the setup mode controlling how the batched reports are generated
smVoid no immediate VPE export format output (ie output to be handled later, collectively)
smPDFFile export to PDF file
smHTMLFile export to HTML file
smXMLFile export to XML file
smODTFile export to ODT file
smVPEFile export to VPE file
smCustomFile generate custom format indicated by AFormatindex
AFormatindex: Integer = 0); the format index associated with SetupMode smCustomFile (default = 0)

Other Batch Functions, Procedures & Properties

function BatchOutput(outputs a report batch, returning True if output handled
AReportWriter: TReportWriter; ReportWriter managing output
ASetupAction: TOutputSetupAction; specifies the output action to take
saPreview preview
saPrint print directly to output device as set (no prompt)
saFile save to selected file format
saEmail save to selected file format and present result for emailing
AllowConfirmDone: Boolean = True; set False to suppress the output confirmation prompt
ForceFileNamePrompt: Boolean = False): Boolean; set True to force a filename prompt
function BatchOutputPrompt(prompts user for a batch output option (returns saCancelled if cancelled)
AReportWriter: TReportWriter; ReportWriter managing output
ASetupActions: TOutputSetupActions set of batch output actions to include in the prompt
saPreview allow preview output
saPrint allow print output
saFile allow file output
saEmail allow email output
): TSetupAction; returns the selected setup action (saCancelled, or one of the listed TOutputSetupActions)

Page 23 of 62

VPE+ Application Reporting Interface

& VPE+ Report Interface (TReportinterface) Batched Report Execution

Other Batch Functions, Procedures & Properties continued

function SystemBatchFileName(Returns a validated file name for the indexed report = "FileNameStub[Succ(ABatchindex)]"
ABatchindex: Integer; index of batched report
ASystemOutputFormat: TSystemFormat; required target output format (dictates file extension)
ofPDFFile to PDF file
of ODTFile to penDocument Text file
ofHTMLFile to HTML file
ofXMLFile to XML file
of VPEFile to VPE (native) file
AFileNameStub: string): string; report filename stub - if not provided, default is "Report"
function UserBatchFileName(Returns a validated file name based on AFileName
ABatchindex: Integer; index of batched report
AFormatindex: Integer; custom format index indicating which custom format extension to use
AFileName: string); custom report filename; if not provided = "Report[Succ(ABatchindex)]"
procedure BatchClose; closes all reports in a batch. Must be called to clean up temporary files and batch resources.
procedure BatchltemClose(closes a specific batch report
ABatchindex: Integer); index of batch report to close, 0..Pred(ReportBatch.Count)
procedure BatchSetup(presents a pre-output batch setup prompt (obtain output selection using ReadBatchSetupResult
AReportWriter: TReportWriter); ReportWriter managing output
property Batchindex: Integer; reflects the index of the current report in ReportBatch
property Batching; True when batching reports (as a result of calling ExecuteBatchReport)
Non-batched reports cannot be executed while batching is in progress
property ReportBatch: TList; gives access to the list of batched reports (TBatchltem's)

Adding Existing Reports to a Batch
Populate a TBatchltem record and call ReportBatch.Add(ABatchltemPtr);
ReportBatch will handle disposal of the Batchltem.

TBatchltem = record

SourceVPEFileName: string; filename of source report (usually VPE format)
SourceVPEFileType: TSourceVPEFileType; sftVoid for custom formats; sftTempVPE to delete source VPE file; else sftkeepVPE
TargetFormat: TTargetFormat; format of output file to be generated (if needed)
TargetFileName: string; name of output file to be generated (if needed)
TargetlsTemp: Boolean; True to delete the target file after processing
UserSelected: Boolean; True if flagged as user-selected by default
OverwriteOK: Boolean; True if user has OK'ed report file overwrite
UserOptionTag: Integer; optional tag assigned to report
Formatindex: Integer; 0 = standard formats, else users Formatindex (1..CustomFormatCount)
Filterindex: Integer; this marks save dialogue Filterindex (1-based)
Description: string; report description (optional, default = TitleSystem)
end;

Setting Descriptions for Batched Reports

A report description can be specified in property ReportWriter.ReportDescription (eg set it in OnConfigure) or left to default to
Reportinterface.DefaultReportDescription (default = "Report”). As a report executes, the description can also be further customised in
ReportWriter.OnDescribeReport.

Page 24 of 62

VPE+ Application Reporting Interface

& VPE+ Report Interface (TReportinterface) Report Run Execution

Bulk Report Runs
Multiple (bulk) reports can be generated as a "report run”. You might do this to generate a series of subscription reports for your customer base,
for example. A report run is managed within the scope of a single (override) status form instance. You can set this form up any way you like. It
can show progress details and current report information etc.
To engineer the run, begin by creating an instance of your status form (eg MyStatusForm). Pass it a parameterless callback procedure in the
constructor, or by assigning the callback procedure to a form property after creation. You code this procedure yourself to generate the run
reports. By calling it in response to a button click or in the OnActivate event, for example, the status form starts the actual run.
A suitable constructor might be declared as:

constructor CreateModalStatus(VPEInterface: TReportinterface; ReportRunProcedure: TReportRunCallback = nil);

type TReportRunCallback = procedure() of object;

To execute the run, call the Reportinterface method ExecuteReportRun(MyStatusForm). It will show MyStatusForm modally.

A label on MyStatusForm can be assigned to VPElnterface.StatusLabel so that VPElInterface.DisplayStatus messages are automatically
displayed. Otherwise, you can update the (modal) status form however you wish.

function ExecuteReportRun(executes a "report run" using AStatusForm to display status details
AStatusForm: TForm): TModalResult;

Page 25 of 62

VPE+ Application Reporting Interface

& VPE+ Report Interface (TReportinterface) Output Devices

Device Management

The Reportinterface manages report output devices through its (property) DeviceManager which maintains an independent list of available
devices (DeviceList) including basic device details stored as TDevice definitions.

The DevicelList is automatically initialised on demand (eg when the first report is executed) and is simply a string list matching the system printer
list with associated TDevice objects. The index of the default device is noted in DefaultDevicelndex. Until other devices are referenced, their
TDevice records are not populated.

A device may be selected prior to ExecuteReport using procedures SelectDevice or SwitchDevice. However, device properties (DeviceCopies,
DeviceCollate, DeviceDuplex) are defaulted on ExecuteReport, so must be set once the report is actually underway.

The following properties and procedures are available through the Reportinterface.DeviceManager property:

procedure AssignBinList(assigns a list of bins from the specified device
ADevicelndex: Integer; index of the device in Device list
AStringList: TStrings); target string list to assign to
procedure AssignDeviceList(assigns a list of devices
AStringList: TStrings); target string list to assign to
procedure DefaultDeviceSettings; defaults the active devices settings (1 copy, collation on, duplexing off)
procedure FinaliseDeviceList; clears the Device list of "device markers" (list will be re-initialised on demand)
procedure InitialiseDeviceList; populates the Device list if not already done (call FinaliseDeviceList first to force a re-initialisatio
function CanCollate: Boolean; True if CollateMethod is CollateManual, or active device supports collation
function Devicelndex: Integer; index of the active device
function Devicelndex(returns the Device index for the named device
ADeviceName: string; name of device to find
ExactName: Boolean = False): Integer; unless True, returns first device containing ADeviceName string
function DeviceName: string; returns name of active device
function DeviceName(returns name of indexed device
ADevicelndex: Integer): string; index of device for which to return a name
function Device: TDevice; returns the TDevice object representing the active device
function Device(returns the TDevice object representing the indexed device
ADevicelndex: Integer): TDevice; index of device for which to return a TDevice
function Device(returns the TDevice object representing the named device
ADeviceName: string; name of device to find

ExactName: Boolean = False): TDevice;
unless True, returns first device containing ADeviceName string

function ReportDevicesExist: Boolean; True if any device is defined; False if no devices are available
function SelectDevice(returns True if the named Device is made "active"
ADeviceName: string): Boolean; name of device to find

ExactName: Boolean = False): TDevice;
unless True, activates the first device containing ADeviceName string

function SelectDevice(returns True if the indexed Device is made "active"
ADevicelndex: Integer): Boolean; index of device to activate

function SelectDevice: Boolean; returns True if the default Device is made "active"

function SwitchDevice: Boolean; prompts for a device to activate, returning True if successful

property CollateMethod: TCollateMethod; PrinterCollation for printer dependent collation (if capable)

ManualCollation to manually implement collation printing 1 copy at a time

property DefaultDevicelndex: Integer; returns the index of the (Windows) default device

property DeviceCollate: Boolean; sets collation state (see CollationMethod)

property DeviceCopies: Integer; sets number of copies to output

property DeviceCount: Integer; returns number of devices available

property DeviceDuplex: TDuplex; sets duplex state (dupSimplex, dupHorizontal, dupVertical)

property DevicelList: TStrings; returns a list of devices

Page 26 of 62

VPE+ Application Reporting Interface

FE*

VPE+ Report Interface (TReportinterface) Output Devices

Device Objects Maintained by DeviceManager

As each available device is accessed, a TDevice object is created to represent it.
These objects can be referenced using the "Device" properties of Reportinterface.DeviceManager.

procedure AssignBinList(
AStringList: TStrings);

function ActiveBinID: Integer;

function ActiveBinIndex: Integer;

function BinNameByIndex(
ABinIndex: Integer): string;

function BinNameBYyID(
ABInID: Integer): string;

function BinIDByIndex(
ABinIndex: Integer): Integer;

function BinindexByID(
ABInID: Integer): Integer;

function GetBinID(
var ABInID: Integer): Boolean;

property CopyLimit: Longint;
property Devicelndex: Integer;
property DeviceName: string;
property SupportCollate: Boolean;
property SupportDuplex: Boolean;
property SupportOrientation: Boolean;

assigns a list of bins from the specified device
target string list to assign to

Device ID of the active bin for this device
index of the active bin in the bin list for this device

returns name of indexed bin
index of bin to be named

returns name of ID'ed bin
device bin ID of bin to be named

returns device bin ID for indexed bin
index of bin to be ID'ed

returns index of ID'ed bin
device bin ID of bin to be indexed

returns True if identifies ID of devices bin
variable to hold returned device bin ID

returns the devices copy limit

returns the devices index in the device list

returns the devices name

returns True if the device supports collation

returns True if the device supports duplexing
returns True if the device supports paper orientation

Page 27 of 62

VPE+ Application Reporting Interface

FE*

VPE+ Report Interface (TReportinterface) Error Control

Aborting Reports and Error Control

property AbortReason: string;

property ReportStatus: TReportStatus;

TReportStatus
rsReportOK
rsSetupCancelled
rsSetupRejected
rsOverwriteRejected
rsReportCancelled
rsReportAborted
rsReportError

function AbortReasonMessage: string;

function ReportAborted(

ShowReason: Boolean = False): Boolean;

procedure AbortReport(
AbortType: TReportAbort;
Reason: string = ");
TReportAbort
rsSetupCancelled..rsReportError

Core error message which gets set internally to:
- exception message for exceptions generated during the generate process
- "ReasonSetupRejected" string returned from OnSetupAfter if setup rejected
- "Reason" string returned via procedure AbortReport

Reflects the "completion status" of a report following generation.

report completed normally

user clicked <Cancel> in report setup (report never generated)
no filename or OnSetupAfter not Accepted

user rejected file overwrite

user cancelled report (eg per status form <Cancel>)

user aborted during generation (eg per status form <Abort>)
failed to generate report

Returns a compound error message string reflecting:
- the report completion status set by procedure AbortReport
- the string returned by property AbortReason

returns True if the report has been aborted
Set True to display the AbortReasonMessage dialogue

call AbortReport to halt a report
assign a general type to the abort call (see below)
optionally add more detail for the reason

subrange of TReportStatus reflecting report abort states
(see TReportStatus details above)

Exceptions raised during report execution can be trapped in the event TReportWriter.OnGenerateException. Either handle the exception and set
event parameter ReRaise to False, or allow the exception to be raised by leaving ReRaise True.

Note also that executing a report clears and residual report status and error information relating to any previous report.

Error Control With Report Runs

The above methods relate to errors that might occur while generating a single report. When executing a report run, however, we must be
concerned with errors that might occur between multiple reports, and, in particular, a request to STOP a report run. This requires a set of "run
status flags" separate from those described above because report status flags pertain to a single report and are "cleared" with each new report,
whereas a report run spans multiple reports.

The failure of a given report to generate does not necessarily mean a report run should stop. Unless another run error state is already set, a
report error will automatically set a run state of "rsRunReportError". If you want the run to continue, you can call the method ClearRunError
which will set the state "rsRunWithErrors" instead.

A call to AbortReportRun does not directly stop a run, but rather sets an abort state which you can periodically test during the run. The easiest
way to do this is to poll the run status before each report is generated. Call Application.ProcessMessages first to allow any state changes in the
message queue to be processed, then test RunAborted for the run state. A specific status can be determined by referencing the property

RunStatus.
property RunStatus: TRunStatus;

TRunStatus
rsRunOK
rsRunWithErrors
rsRunCancelled
rsRunAborted
rsRunReportError

function RunAborted: Boolean;

procedure AbortReportRun(
AbortType: TRunAbort;
Reason: string = ");

TRunAbort
rsRunCancelled..rsRunReportError

procedure ClearRunError;

Reflects the status of a "report run".

run completed normally

run completed, but with errors in one or more reports
user clicked <Cancel> in setup before run started
user aborted run (eg per status form)

an error occurred generating a given report

returns True if the run has been aborted

call AbortRun to halt a run
assign a general type to the abort call (see below)
optionally add more detail for the reason

subrange of TRunStatus reflecting run abort states
(see TRunStatus details above)

resets a run error state to rsRunWithErrors (so a run can continue)

Page 28 of 62

VPE+ Application Reporting Interface

" VPE+ Report Interface (TReportinterface) Print Functions

Use PrintPos for single line text output. PrintPos will advance the cursor XPos to the end of the output text, but will NOT change the cursor
YPos.

procedure PrintPos(

Text: string; text to print

Justify: TPrintJustify; text justification (jLeft, jRight, jCentre), default = jLeft

X: Double; horizontal XPos reference point about which to justify text

Y: Double; vertical YPos at which to output text

LeftLimit: Double; left text margin or limit (NA = default = BandLeft)

RightLimit: Double; right text margin or limit (NA = default = BandRight)

TextStyle: TTextStyle = tsNormal; font style to use for text output (Bold, Underline, Italic, Strikeout)

else tsB, tsU, tsl, tsS, tsBU, tsBlI, tsBS, tslU, tsSU, tsIS, tsBIU, tsBSU, tsBIS, tsISU, tsBISU
TruncateMode: TStringCutMode = scmChar); truncation method (scmWord or scmChar) - by whole word, or by character

Additional overloaded options:

procedure PrintPos(

Text: string;
TextStyle: TTextStyle = tsNormal;
procedure PrintPos(procedure PrintPos(
Text: string; Text: string;
Justify: TPrintJustify; Justify: TPrintJustify;
X: Double; X, Y: Double;
TextStyle: TTextStyle = tsNormal; TextStyle: TTextStyle = tsNormal;
TruncateMode: TStringCutMode = scmChar); TruncateMode: TStringCutMode = scmChar);

For printing by character alignment (eg a decimal point) - justifies 1st occurrence of JustifyChar at X:

procedure PrintPos(
Text: string;
JustifyChar: Char;
X: Double;
TextStyle: TTextStyle = tsNormal;

For single line text output followed by NewLine;

procedure PrintLine(
Text: string;
Justify: TPrintJustify = jLeft;
TextStyle: TTextStyle = tsNormal);

procedure PrintLine(procedure PrintLine(

Text: string; Text: string;

Justify: TPrintJustify = jLeft; Justify: TPrintJustify = jLeft;

X: Double; X, Y: Double;

TextStyle: TTextStyle = tsNormal; TextStyle: TTextStyle = tsNormal;

TruncateMode: TStringCutMode = scmChar); TruncateMode: TStringCutMode = scmChar);
procedure PrintLine(

Text: string;

Justify: TPrintJustify = jLeft;

X, Y, LeftLimit, RightLimit: Double;
TextStyle: TTextStyle = tsNormal;
TruncateMode: TStringCutMode = scmChar);

Page 29 of 62

VPE+ Application Reporting Interface

" VPE+ Report Interface (TReportinterface) Print Functions

Line Spacing

Line spacing can be increased by adding space above and/or below the font line. By default, there is no such extra space. Use the method
SetLineSpacing, or set properties LineSpaceTop and LineSpaceBottom to apply spacing. Set these properties to zero, or call ClearLineSpacing
to remove extra spacing.

Note that the value of LineHeight does not change with increased line spacing. This is because LineHeight reflects the size of the FONT applied
in all cases, and not any extra spacing between lines. Positional font metrics LineTop, LineMiddle, LineBottom, FontTop, FontMiddle,
FontBaseline and FontBottom will, however, be displaced downward by the value of LineSpaceTop. They are not affected by changes to
LineSpaceBottom.

The vertical cursor position, YPos, always refers to the top-most position above LineSpaceTop.

When using TabBoxes, the drawn box is extended to cover any additonal line spacing.

property LineSpaceTop: Double; value of extra top line spacing (default = 0).

property LineSpaceBottom: Double; value of extra bottom line spacing (default = 0).

procedure SetLineSpacing(applies extra line spacing (space above or below the font line).
ALineSpaceTop, extra space to include above the font line (NA for no change).
ALineSpaceBottom: Double); extra space to include below the font line (NA for no change).

procedure ClearLineSpacing; clears any extra line spacing (both LineSpaceTop and LineSpaceBottom).

Page 30 of 62

VPE+ Application Reporting Interface

Y& VPE+ Report Interface (TReportinterface) Line Tabs

Horizontal line tabs are a useful means of implementing single line columnar output. Text is printed between defined text margins within the tab
using PrintTab, and can be enhanced with tab boxes and background shading.

Tabs are sequentially defined to an "active list" using the method SetLineTab. Such a list can be saved to an indexed location or to a stack using
PushTablList, and retrieved and re-applied using PopTabList. Optionally modify tab presentation using SetTabBox and SetTabBoxes (for tab box
lines and shading) or the various "bump" features: BumpTabBox, BumpTabBrush, BumpTabJustify, BumpTabMargins, BumpTabPenColour,
BumpTabPenStyle.

Justified text is output to a tab between left and right text margins using the method PrintTab. A variety of other methods and properties allow
you to manipulate and exploit tabs in a report:

Setting / Defining Line Tabs

function SetLineTab(adds a sequential tab setting, returning index of added tab (1-based)
ALeftPos, start (left) position of tab (use NA to follow previous tab)
AWidth: Double; width of tab
Aldustify: TPrintJustify; text justification (jLeft, jRight, jCentre)
ALeftMargin: Double = NA;): Integer; margin between left tab border and start of text (NA = default = 0.5 mm)
ARightMargin: Double = NA): Integer; margin between right tab border and end of text (NA = default = 0.5 mm)

NOTE: Use a text block (TTextBlock) to justify text jBlock or jBlockFull.

procedure SetTabBox(defines a tab box for a given tab

ATablndex: Integer; index of tab to set (1..Count)

ALeftPenWidth, pen width for left box side (NA = as is; pwNone = 0 = no line)

ATopPenWidth, pen width for top box side (NA = as is; pwNone = 0 = no line)

ARightPenWidth, pen width for right box side (NA = as is; pwNone = 0 = no line)

ABottomPenWidth: Double; pen width for bottom box side (NA = as is; pwNone = 0 = no line)

ABrushColour: TColor = cINone); overload; background shading colour to apply (NA = as is; default = cINone = transparent)
procedure SetTabBox(defines a tab box for a given tab with the same PenWidth for all box lines

ATablndex: Integer; index of tab to set (1..Count)

APenWidth: Double = NA, pen width for all box sides (default = NA = as is; pwNone = 0 = no line)

ABrushColour: TColor = cINone); overload; background shading colour to apply (NA = as is; default = cINone = transparent)
procedure SetTabBox(defines a tab box for the last defined tab

ALeftPenWidth, pen width for left box side (NA = as is; pwNone = 0 = no line)

ATopPenWidth, pen width for top box side (NA = as is; pwNone = 0 = no line)

ARightPenWidth, pen width for right box side (NA = as is; pwNone = 0 = no line)

ABottomPenWidth: Double; pen width for bottom box side (NA = as is; pwNone = 0 = no line)

ABrushColour: TColor = cINone); overload; background shading colour to apply (NA = as is; default = cINone = transparent)
procedure SetTabBox(defines a tab box for the last defined tab with the same PenWidth for all box lines

APenWidth: Double = NA; pen width for all box sides (NA = default = as is; pwNone = 0 = no line)

ABrushColour: TColor = cINone); overload; background shading colour to apply (NA = as is; default = cINone = transparent)
procedure SetTabBoxes(defines tab boxes for all tabs

ALeftPenWidth, pen width for left box side (NA = as is; pwNone = 0 = no line)

ATopPenWidth, pen width for top box side (NA = as is; pwNone = 0 = no line)

ARightPenWidth, pen width for right box side (NA = as is; pwNone = 0 = no line)

ABottomPenWidth: Double; pen width for bottom box side (NA = as is; pwNone = 0 = no line)

ABrushColour: TColor = cINone); overload; background shading colour to apply (NA = as is; default = cINone = transparent)
procedure SetTabBoxes(defines tab boxes for all tabs with the same PenWidth for all box lines

APenWidth: Double = NA; pen width for all box sides (NA = as is; pwNone = 0 = no line)

ABrushColour: TColor = cINone); overload; background shading colour to apply (NA = as is; default = cINone = transparent)
property TabBoxLineColour: TColor; colour to use for box lines (default = clBlack)
property TabBoxLineStyle: TVPEPenStyle; pen style to use for box lines: psSolid (default), psDash, psDot, psDashDot, psDashDotDot

Page 31 of 62

VPE+ Application Reporting Interface

FE*

VPE+ Report Interface (TReportinterface) Line Tabs

Output to Line Tabs

procedure PrintTab(
Text: string;
TextStyle: TTextStyle = tsNormal;

DrawBox: Boolean = True;

ShadeBox: Boolean = True); overload;

procedure PrintTab(
ATablndex: Integer;
Text: string;
TextStyle: TTextStyle = tsNormal;

DrawBox: Boolean = True;

ShadeBox: Boolean = True); overload;

procedure PrintTabSet(
TextSet: array of string;
TextStyle: TTextStyle = tsNormal;

DrawBox: Boolean = True;
ShadeBox: Boolean = True);

procedure SkipTab(
TabCount: Integer = 1;
DrawBox: Boolean = True;
ShadeBox: Boolean = True);

procedure DrawTabBox(
ALineTab: TLineTab;
DrawBox: Boolean = True;
ShadeBox: Boolean = True);

procedure DrawTabBox(
ATablndex: Integer;
DrawBox: Boolean = True;
ShadeBox: Boolean = True);

procedure DrawTabBoxes(
DrawBox: Boolean = True;
ShadeBox: Boolean = True);

prints to the current line tab, indexed 1..Count, then moves to next sequential tab

text to print

font style to use for text output (Bold, Underline, Italic, Strikeout), default = tsNormal

else tsB, tsU, tsl, tsS, tsBU, tsBl, tsBS, tsUI, tsUS, tsIS, tsBUI, tsBUS, tsBIS, tsUIS, tsBUIS
True (default) to print the tab box lines (if set), else no lines

True (default) to shade the tab box (if set), else no background shading

prints to a specified line tab, but does NOT change the active tab

index of line tab to output to (1..Count)

text to print

font style to use for text output (Bold, Underline, ltalic, Strikeout), default = tsNormal

else tsB, tsU, tsl, tsS, tsBU, tsBlI, tsBS, tsUI, tsUS, tsIS, tsBUI, tsBUS, tsBIS, tsUIS, tsBUIS
True (default) to print the tab box lines (if set), else no lines

True (default) to shade the tab box (if set), else no background shading

prints an array of strings to sequential line tabs (from current tab)

text strings to print

font style to use for text output (Bold, Underline, Italic, Strikeout), default = tsNormal

else tsB, tsU, tsl, tsS, tsBU, tsBlI, tsBS, tsUI, tsUS, tsIS, tsBUI, tsBUS, tsBIS, tsUIS, tsBUIS
True (default) to print the tab box lines (if set), else no lines

True (default) to shade the tab box (if set), else no background shading

skips the next line tab(s)

number of tabs to skip (default = 1)

True (default) to print the tab box lines (if set), else no lines

True (default) to shade the tab box (if set), else no background shading

draws a tab box (no text output)

line tab for which the box is drawn

True (default) to print the tab box lines (if set), else no lines

True (default) to shade the tab box (if set), else no background shading

draws a tab box (no text output)

index of tab (1..Count) for which the box is drawn

True (default) to print the tab box lines (if set), else no lines

True (default) to shade the tab box (if set), else no background shading
draws all tab boxes (no text output)

True (default) to print the tab box lines (if set), else no lines
True (default) to shade the tab box (if set), else no background shading

Note: DrawTabBox & DrawTabBoxes do NOT clear tab bumps when called - use ClearTabBumps instead.

procedure FinishTabBoxes(
PenWidth: Double);

Saving, Retrieving and Clearing Line Tabs

procedure PushTablList; overload;

procedure PushTabList(
ATabListindex: Integer); overload;

procedure PopTablList; overload;

procedure PopTabList(
ATabListindex: Integer); overload;

procedure ClearLineTabs;
procedure ClearTabListStack;
procedure ClearSavedTabLists;

draws the top or bottom line of all line tab boxes (at YPos)
width of pen to use (eg pwNormal = 0.3 mm)

push active line tab list onto stack (LIFO)

save active line tab list to an indexed position
index position to save to (1..10)

make last pushed line tab list active, and remove it from the stack

restore saved line tab list from indexed position
index position to restore from (1..10)

clears active line tabs
clears tab list stack (called automatically after a report)
clears all saved tab lists (called automatically after a report)

Page 32 of 62

VPE+ Application Reporting Interface

FE*

VPE+ Report Interface (TReportinterface) Line Tabs

Tab Bumpers

For 1-off overrides (or "bumps") against the next tab. Bumps are cleared when the tab is printed.

procedure BumpTabBox(
ALeftPenWidth,
ATopPenWidth,
ARightPenWidth,
ABottomPenWidth: Double);

procedure BumpTabBrush(
ABrushColour: TColor);

procedure BumpTabJustify(
Justify: TPrintJustify);

procedure BumpTabMargins(
MarginLeft
MarginRight: Double);

procedure BumpTabPenColour(
APenColour: TColor);

procedure BumpTabPenStyle(
APenStyle: TVPEPenStyle);

procedure ClearTabBoxBumps;
procedure ClearTabBrushBump;
procedure ClearTabBumps;
procedure ClearTabJustifyBump;
procedure ClearTabMarginBump;
procedure ClearTabTextBumps;
procedure FreeTabBumper;

procedure HoldTabBumps;

Tab Metrics & Miscellaneous

Note: Tab Index = 1..Count

function TabStart(
ATablndex: Integer): Double;

function TabCentre(
ATablndex: Integer): Double;
function TabEnd(
ATablndex: Integer): Double;
function TabLeftMargin(
ATablndex: Integer): Double;
function TabRightMargin(
ATablndex: Integer): Double;
function TabTextStart(
ATablndex: Integer): Double;
function TabTextCentre(
ATablndex: Integer): Double;
function TabTextEnd(
ATablndex: Integer): Double;
function TabWidth(
ATablndex: Integer): Double;
function TabTextWidth(
ATablndex: Integer): Double;
function GetTab(
ATablindex: Integer): TLineTab;
function GetTabList(

ATabListindex: Integer): TLineTabList;

procedure ResetTablLine;
property ActiveTablndex: Integer;
property ActiveTabList: TLineTabList;

bumps tab box line widths

alternative left box line width (NA = no bump; pwNone = 0 = no line)
alternative top box line width (NA = no bump; pwNone = 0 = no line)
alternative right box line width (NA = no bump; pwNone = 0 = no line)
alternative bottom box line width (NA = no bump; pwNone = 0 = no line)

bumps background shading colour
alternative brush colour to apply (cINone for no shading)

bumps text justification
alternative justification to apply (jLeft, jCentre, jRight)

bumps tab margins
alternative left tab margin (NA = no bump, negative value to widen tab)
alternative right tab margin (NA = no bump, negative value to widen tab)

bumps line pen colour
alternative pen colour to use

bumps line pen style
alternative pen style to use

clears tab box pen, colour and brush shading bumps
clears tab brush shading bump

clears tab bumper & cancels HoldTabBumps

clears current tab text justification bump

clears current tab margin bumps

clears tab justification and margin bumps

frees tab bumper object & cancels HoldTabBumps
(called automatically after a report)

prevents automatic clearing of tab bumper (call ClearTabBumps instead)

XPos for tab left border
index of tab

XPos for tab centre position (centred between borders)
index of tab

XPos for tab right border
index of tab

the tabs left text margin
index of tab

the tabs right text margin
index of tab

XPos for start of tab text (accounts for left margin)
index of tab

XPos for tab centre position (centred between text margins)
index of tab

XPos for end of tab text (accounts for right margin)
index of tab

tab width (between left and right borders)
index of tab

text width, accounting for left and right text margins
index of tab

returns tab object from tab line given by Index
index of tab

returns tab line object given by Index from saved lists
index of tab list

restores first tab as active tab and returns cursor to BandLeft

set or get the active line tab index (1..Count). Cursor position is not changed.

current ("active") line tab list

Page 33 of 62

VPE+ Application Reporting Interface

“EE*

Text Block (TTextBlock) Wrapping Text Blocks

TTextBlock encapsulates the VPE text block object (TVPETextBlock) and allows for controlled output of multi-line text blocks. Either drop a
TTextBlock onto a form and link it to the ReportWriter generating the report (by setting its ReportWriter property), or create one on the fly using
constructor Create(ReportWriter). Call the OpenBlock method (or OpenBlockFromFile or OpenBlockFromStream) to pass text to the block and
render it (internally) using the currently set margins and font settings. You can also pass block margins and text margins via this method. The
PrintLines and PrintHeight methods output text by line count or height constraint. As output proceeds, a "text cursor" is advanced through the
text block so only remaining text is output with subsequent calls to these methods.

To manage text output with varying line widths (eg to wrap text around another object), or varying font settings etc, use the matching
RenderLines or RenderHeight methods which "output” text in the same manner, but without adding it to the document. This allows you to assess
vertical space requirements for the text. As changes are made to the boundaries, justification or font settings, the remaining text must be
re-rendered by calling RenderBlock before reading line count or height properties etc.

Note that properties such as BlockLineCount and BlockHeight will reflect the full combined line count and height of all the segments included in
a block. Call ResetBlock to return the "text cursor" to the beginning at any time, particularly after a block has been "Rendered" for height
assessment and must be re-started for final output.

You may re-use the same TTextBlock for a new block of text by simply calling OpenBlock again. Call CloseBlock to release the underlying
TVPETextBlock and free the memory associated with it while a VPE document is still open (this happens automatically when the document is
closed). CloseBlock is called automatically if you call OpenBlock or free a TTextBlock.

constructor Create(
AOwner: TComponent);

procedure OpenBlock(

returns the TTextBlock object created
AOwner should be a ReportWriter, although the writer can be set later via the ReportWriter prop

ATextBlock: string;

ABlockLeft: Double = NA,;
ABlockRight: Double = NA;
ATextLeftMargin: Double = NA,
ATextRightMargin: Double = NA);

procedure OpenBlockFromFile(

AFileName: string;

ABlockLeft: Double = NA,;
ABlockRight: Double = NA;
ATextLeftMargin: Double = NA,;
ATextRightMargin: Double = NA);

text with which to initialise the block

optional left print boundary (otherwise set per BlockLeft)
optional right print boundary (otherwise set per BlockRight)
optional left text margin (otherwise set per TextLeftMargin)
optional right text margin (otherwise set per TextRightMargin)

source file for text with which to initialise the block

optional left print boundary (otherwise set per BlockLeft)
optional right print boundary (otherwise set per BlockRight)
optional left text margin (otherwise set per TextLeftMargin)
optional right text margin (otherwise set per TextRightMargin)

procedure OpenBlockFromStream(

AStream: TStream;
ABlockLeft: Double = NA;
ABlockRight: Double = NA;

ATextLeftMargin: Double = NA,
ATextRightMargin: Double = NA);

procedure CloseBlock;
procedure RenderBlock;
procedure ResetBlock;

source stream for text with which to initialise the block
optional left print boundary (otherwise set per BlockLeft)
optional right print boundary (otherwise set per BlockRight)
optional left text margin (otherwise set per TextLeftMargin)
optional right text margin (otherwise set per TextRightMargin)

frees memory associated with the underlying VPE TVPETextBlock.
re-renders remaining text with current width and font settings
re-winds the block to the beginning of the text (as after OpenBlock call)

Note that calls to TTextBlock output functions are only valid during report execution (between OnGenerateStart and OnGenerateEnd).

Text Block Definition:

Set these properties to define the block (and call RenderBlock to re-render after any changes):

property BlockLeft: Double;
property BlockRight: Double;

property ReportWriter: TReportWriter;

property TextLeftMargin: Double;

property TextRightMargin: Double;

property Justify: TJustify;
property TextStyle: TTextStyle;

defines left block boundary
defines right block boundary

the TReportWriter generating the report
(passed in the constructor, or set in the component at design time)

defines left margin between BlockLeft and text

defines right margin between BlockRight and text
(default left and right text margins = 0 mm)
jCentre justified text is centred between the margins, so, as a rule,
they should be even for centred text.
set text justification (jLeft, jRight, jCentre, jBlock, jBlockFull)
font style to use for text output (Bold, Underline, Italic, Strikeout), default = tsNormal
else tsB, tsU, tsl, tsS, tsBU, tsBlI, tsBS, tsUI, tsUS, tsIS, tsBUI, tsBUS, tsBIS, tsUIS, tsBUIS

Page 34 of 62

VPE+ Application Reporting Interface

Text Block (TTextBlock) Wrapping Text Blocks

Text Block Qutput:

procedure PrintHeight(
HeightLimit: Double;

outputs block text to a vertical height constraint
print height constraint; stops with respect to HeightMode

HeightMode: THeightMode = hmStopBefore;

EndOnNewLine: Boolean = True);

procedure PrintLines(
LineCountLimit: Integer = 0;
EndOnNewLine: Boolean = True);

Pre-Rendering TextBlocks:

hmStopBefore = last line must fit WITHIN HeightLimit (default)

hmStopBeyond = accepts line that partially fits as well (useful when wrapping around objects)
True (default) to finish block with NewLine (else cursor finishes at BlockRight)

outputs block text to a line count constraint

line count constraint (default = 0 = all lines)
True (default) to finish block with NewLine (else cursor finishes at BlockRight)

In order to assess the overall line count or height of a multi-segmented TextBlock, it is necessary to pre-render (without actual output) each
segment. Use procedure RenderHeight or RenderLines to achieve this. As you change block width or font settings etc, it is still necessary to call
RenderBlock to re-render the remaining text before calling either of these procedures.

BlockLineCount and BlockHeight will reflect the combined line count and height of all rendered block segments.

To subsequently output the text block, call ResetBlock to re-initialise the block text, and use procedure PrintLines or PrintHeight as appropriate.

procedure RenderHeight(
HeightLimit: Double;

renders block text to a vertical height constraint (no actual output)
print height constraint; stops with respect to HeightMode

HeightMode: THeightMode = hmStopBefore;

EndOnNewLine: Boolean = True);

procedure RenderLines(
LineCountLimit: Integer = 0);

Other TTextBlock Properties and Methods:

function BlockHeight: Double;
function BlockHeightLeft: Double;
function BlockLineCount: Integer;
function BlockLineCountLeft: Integer;
function BlockRendered: Boolean;
function BlockTextWidth: Double;
function BlockWidth: Double;

function EnoughTextWidth(
ATextWidth: Double = 0): Boolean;

function ISsEmpty: Boolean;
function IsFinished: Boolean;
function TextLeft: Double;
function TextRight: Double;
property CurrentLine: Integer;

Synchronising Text Blocks to Tab Settings

hmStopBefore = last line must fit WITHIN HeightLimit (default)
hmStopBeyond = accepts last partial line as well (useful when wrapping around objects)
True (default) to finish block with NewLine (else cursor finishes at BlockRight)

renders block text to a line count constraint (no actual output)
number of lines to render (default = 0, for all lines)

full height of block (all rendered segments)

height of remaining (unprinted) lines

total number of lines rendered (including any already output lines)

number of lines remaining for output

True if block has been rendered (else call to OpenBlock or RenderBlock needed)

returns width of text (between left and right text margins, + "eyeball tolerance" of 0.15 mm)
returns block width (between BlockLeft and BlockRight)

returns True if block will accommodate a given width of text
the text width to accommodate (default = 0 for minimum allowed width)
NB the minimum allowed text width is arbitrarily set to 20mm

true if there is no rendered lines in the block

true if there is nothing left to output

left text margin

right text margin

index of the current line (to be output next) in the block (1st line = 1)

To output text to match line tab settings, text block borders and margins can be synchronised by calling:

procedure SynchToLineTab(
ATablndex: Integer); overload;

procedure SynchToLineTab(
FromLineTablndex,
ToLineTablndex: Integer); overload;

sets text block borders and margins to match a line tab, and calls RenderBlock
index of line tab to synchronise with

sets text block borders and margins to match line tabs, and calls RenderBlock
index of line tab to synchronise left block borders and margins with
index of line tab to synchronise right block borders and margins with

Page 35 of 62

VPE+ Application Reporting Interface

RTF Block (TRTFBlock) Wrapping RTF Blocks

TRTFBlock encapsulates the RTF version of the VPE TVPETextBlock and allows for controlled output of multi-line RTF blocks. Either drop a
TRTFBIlock onto a form and link it to the ReportWriter generating the report (by setting its ReportWriter property), or create one on the fly using
TRTFBIlock.Create(ReportWriter).

Unlike the plain text block component, TRTFBlock does not have Justify or TextStyle properties as these features are encoded in the RTF
instead. Also, because varying font sizes may be involved, line heights may vary. To return the height of a given line, use the function
RTFLineHeight.

Otherwise, in general, an RTFBlock behaves in the same manner as a TextBlock, and the same methods and properties apply.

function RTFLineHeight(returns the height of an RTF line
LineNumber: Integer): Double; number of the line to return height for (1..n)
NB The line number refers to unrendered or unprinted lines only,
so line #1 is always the next line to be rendered or printed.
Already rendered or printed lines are ignored.

RTF On-the-Fly

An RTFBlock can also be used to output "RTF on-the-fly". This involves enriching plain text with RTF coding at the time of printing to enhance
output. A syntactically complete RTF document as such is not required. Conventional header details with font and colour tables are not required.
You could, for example, do no more than place bold tokens around a given word and achieve the expected result.

VPE uses default (internal) font and colour tables which circumvents their need in an RTF string, and makes compiling RTF easy. You can, of
course, readily alter or replace these tables as required. Refer to the VPE documentation for full details of supported coding and usage, and the
methods available to manipulate RTF.

Several additional VPE+ utility methods are provided to assist with compilation of an RTF string by applying specific coding for you. These
methods are entirely optional, simply providing a shortcut to some common RTF syntax. You can encode your own RTF, and exploit more RTF
features than they actually cover.

NOTE: RTF strings with a leading "{" encoding character which is NOT the standard "{\rtf* control code grouping may be misinterpreted by VPE.
In these cases, use the RTFENclose function to enclose the string within a "{\rtf ...}" grouping.

function RTFCodeGroup(returns a string enclosed (grouped) by braces, eg "{AText}"
AText: string): string; the text to be enclosed in braces
function RTFENclose(returns a string enclosed within a RTF header control grouping, eg "{\rtf AText}"
AText: string): string; the text to be enclosed within the RTF header grouping
function RTFLine(returns line feed codes, eg "\line "
ACount: Integer = 1): string; the number of line feed codes to return (default = 1)
function RTFLiteral(returns a string with syntax characters qualified as literals
AText: string): string; the text in which to add a preceding "\" for literal syntax characters
function RTFParagraph(returns paragraph end codes, eg "\par "
ACount: Integer = 1): string; the number of paragraph end codes to return (default = 1)
function RTFStyle(codes a string with a font style and size
AText: string; the text to encode
ATextStyle: TTextStyle; the style to apply (tsNormal for plain text)
else tsB, tsU, tsl, tsS, tsBU, tsBlI, tsBS, tsUI, tsUS, tsIS, tsBUI, tsBUS, tsBIS, tsUIS, tsBUIS
ASize: Integer = NA): string; font point size to apply, (default = NA = no size change)
function RTFStyle(codes a string with a font size
AText: string; the text to encode
ASize: Integer): string; font point size to apply
function RTFTab(returns tab codes, eg "\tab "
ACount: Integer = 1): string; the number of tab codes to return (default = 1)
function RTFTabBullet(returns leading tabs, a bullet, and trailing spaces, eg "\tab \bullet "
ATabCount: Integer = 0; the number of tab codes to add before the bullet (default = 0)
SpacesAfter: Integer = 2): string; the number of spaces to add after the bullet (default = 2)
procedure RTFClearTab(clears a tab position
X: Double); the tab position to clear
procedure RTFClearTabs; clears all tab positions
procedure RTFSetTab(sets a tab position
X: Double); the position at which to set the tab

Page 36 of 62

VPE+ Application Reporting Interface

WPE®

VPE+ ReportWriter (TReportWriter) General

The Report Writer (TReportWriter)

A descendant of TVPENgine providing access to the underlying Virtual Print Engine and additional functionality. Typically, a TReportWriter

component is placed locally for each report, although multiple reports can be generated through the same TReportWriter just as easily.

Custom report parameters may be presented in a group box assigned to ReportOptionGroupBox.

Custom report header and footer titles may be presented in a group box assigned to ReportTitleGroupBox.

Report title and subtitle strings describing the report as a whole, page header title and subtitle strings, and a page footer title string can be
defined for each report and optionally exposed in the default setup form. Additionally, a footer "stamp" string (eg for a company name) with
optional date string appended is available. These report elements can be output in Reportinterface events OnSystemPageHeader and

OnSystemPageFooter, for example, but their use is entirely optional. Properties controlling these features are listed below.

The following properties and procedures extend the functionality of TVPEnNgine:

property CustomFormatCount: Integer;
property CustomFormatDefaultindex: Integer;

function CustomFormatExt(
AFormatindex: Integer): string;

property DefaultFonts

FontName: string;
Sizel to Size5: Integer;

property EnablePageHeaderTitle: Boolean;

the number of custom formats defined (default = 0, no custom formats)

indicates which custom format option is selected by default (1..CustomFormatCount, if any).

returns the file extension to be used for a custom format
index of custom format

Defines a default font in 5 sizes for general use (optionally applied as saved fonts, 1..5).
if not defined (ie no font name or 0 size), defers to Reportinterface.DefaultFonts instead.
name of font to use (default = none)

font sizes to use: defaults = Sizel (0), Size2 (0), Size3 (0), Size4 (0), Size5 (0)

call procedure SetDefaultFonts; to save as fonts 1..5 (eg in ReportWriter.OnConfigure)

if False, disables the displayed page header title in setup (default True)

property EnablePageHeaderSubTitle: Boolean; if False, disables the displayed page header subtitle in setup (default True)

property EnablePageFooterTitle: Boolean;

if False, disables the displayed page footer title in setup (default True)

property FixedBandEnabled: TFixedBandEnabled;

LetterfootEnabled: TFixedBandEnabled;
LetterheadEnabled: TFixedBandEnabled;
PageFooterEnabled: TFixedBandEnabled;
PageHeaderEnabled: TFixedBandEnabled

TBandState
bsDefault
bsDisabled
bsEnabled

property OutputDefaultFileName: string;

Fixed band enable states to be applied on report execution.
If bsDefault, defers to Reportinterface.DefaultFixedBandEnabled state.
Otherwise, overrides Reportinterface.DefaultFixedBandEnabled state.

default for UselLetterfoot state (default bsDefault)

default for UseLetterhead state (default bsDefault)

default for UsePageFooter state (default bsDefault)

default for UsePageHeader state (default bsDefault)

NOTE: Remittance band is disabled by default - enable it using EnableRemittance.

NOTE: FixedBand "Use" states can be overridden in ReportWriter.OnConfigure.

band states

band state defers to the Reportinterface default
band is disabled

band is enabled

specifies a default output filename (default = "Report")

property OutputDefaultFormat: TFileOutputFormat;

specifies which output format (see list below) is selected by default (default ofPDFFile)

property OutputFormats: TFileOutputFormatSetthe set of output formats to be made available (default [ofPDFFile, ofCustomFile])

TFileOutputFormat
ofPDFFile
of ODTFile
ofHTMLFile
ofXMLFile
of VPEFile
ofCustomFile

output actions that can be selected from setup

PDF file format requested

ODT file format requested

HTML file format requested

XML file format requested

VPE native file format requested

custom file format requested (identified by CustomFormatindex)

Page 37 of 62

VPE+ Application Reporting Interface

ﬁ“ VPE+ ReportWriter (TReportWriter) General

property Options: TReportOptionSet; options controlling the behaviour of the report process (applied when report initialised)
TReportOption report options; option set of type TReportOptionSet

roCanDuplex: Boolean; allow duplex options if supported (default = True)

roCanEmail: Boolean; allows emailing options for filed reports (default = True)

roCanFile: Boolean; allow filing of VPE reports to any available format (default = True)

roCanPreview: Boolean; allow preview of VPE reports (default = True)

roCanPreviewlLoad: Boolean; allow user to open further report files in preview (default = True)

roCanPrint: Boolean; allow printing of VPE reports (default = True)

roConfirmOverwrite: Boolean; show confirm dialogue for report file overwrites (default = True)

roConfirmFiled: Boolean; show confirm dialogue when report filed (default = True)

roConfirmPrinted: Boolean; show confirm dialogue when report printed (default = True)

roConfirmBatchOutput: Boolean; show confirm dialogue when batch has been printed or filed

roPrintAbortDialogue: Boolean; show the VPE print abort/progress dialogue while generating reporting (default = True)

roOutputFileNamePrompt: Boolean; prompt for report filename (else accept pre-defined) (default = True)

Once initialised with the defaults, you can set and reference report options with the following (eg in ReportWriter.OnConfigure):

procedure OptionAllow(to allow a single report option
AReportOption: TReportOption); report option to allow

procedure OptionDisallow(to disallow a single report option
AReportOption: TReportOption); report option to disallow

procedure OptionsAllow(allows a set of report options
AReportOptionSet: TReportOptionSet); set of report options to allow

procedure OptionsDisallow(disallows a set of report options
AReportOptionSet: TReportOptionSet); set of report options to disallow

property OptionAllowed[set or get whether a report option is allowed
Index: TReportOption]: Boolean; index of report option

property OptionDisallowed[set or get whether a report option is disallowed
Index: TReportOption]: Boolean; index of report option

property OutputFileName: string; Name of report file to output. OutputFileName is cleared when a report is initialised.

Set a value in ReportWriter.OnConfigure, or adjust in ReportWriter.OnReportFileName.
(specify BEFORE ExecuteReport called to override the Reportinterface default for setup.)
if no OutputFileName is specified (default), the VPE base file is assumed to be temporary.

property PageFooterStamp: string; optional "stamp" for use in the page footer - eg a company name (default none)
NB if none, defaults to TReportinterface.DefaultPageFooterStamp
property PageFooterStampDated: Boolean; if False, the page footer stamp is not dated (default True).
property PageFooterStamped: Boolean; if False, the page footer stamp is not included in the page footer (default True).
property PageFooterTitle: string; a page footer title string
property PageHeaderSubTitle: string; a page header subtitle string
property PageHeaderTitle: string; a page header title string
property PaperOrientation: TPaperOrientation; sets the page orientation (see section on "Paper Orientation")
TPaperOrientation paper orientation options
plPortrait portrait orientation (default, sets VPE.PageOrientation = VORIENT_PORTRAIT).
plLandscape landscape orientation (sets VPE.PageOrientation = VORIENT_LANDSCAPE).
property PreviewWindow: TPreviewWindow; defines various defaults for the report preview window
Height: Integer height to set preview form (default = 600; O if PreviewWindow.PercentScreenHeight specified)
PercentScreenHeight: Integer height to set preview form as percentage of screen height (0 if PreviewWindow.Height specified
PercentScreenWidth: Integer width to set preview form as percentage of screen width (0 if PreviewWindow.Width specified)
ScaleMode: TPreviewScaleMode scale mode to apply when preview opens; psmFullPage or psmPageWidth (default)
Width: Integer width to set preview form (default = 700; 0 if PreviewWindow.PercentScreenWidth specified)
WindowsState: TWindowState window state to apply when preview opens; wsMaximized (default), wsMinimized, or wsNormal
procedure QueryCustomFormat(allows custom format details to be queried per OnCustomFormatQuery event.
AFormatindex: Integer; index of custom format to be queried
out AFormatName, returns the custom format name
AFormatExt: string); returns the custom format file extension
property ReportDescription: Boolean; report description used in setup and as the print spool job description.

If blank, Reportinterface.DefaultReportDescription is used.
Value is passed to ReportWriter.OnDescribeReport event for dynamic description changes.

property ReportFileNameConfirmed: Boolean; where a report filename has already been confirmed in a save dialogue, say, set True
to prevent any subsequent prompts to confirm the filename.

property ReportOptionGroupBox: TGroupBox; assign a GroupBox containing custom report parameter edit controls etc
to be displayed full-width at the bottom of the setup form
> height will be accommodated as required.

> width will be increased to 421 minimum, but greater is accommodated.
Page 38 of 62

VPE+ Application Reporting Interface

ﬁ“ VPE+ ReportWriter (TReportWriter) General

property ReportSubTitle: string; subtitle to describe a report (eg used in the default report setup form)

property ReportTag: Integer; an optional identification tag assigned to a report
can be set in ReportWriter.OnDescribeReport

property ReportTitle: string; title to describe a report (eg used in the default report setup form)
(could also be used to set ReportWriter.ReportDescription for the print spool)

eg ReportTitle = "Customer Credit Summary"
ReportSubTitle = "for Overdue Accounts"

property ReportTitleGroupBox: TGroupBox; assign a GroupBox containing custom header/footer edit controls etc
to be displayed in the setup form in place of the default Title box
> height will be increased to 110 minimum, but greater is accommodated.
> width will be increased to 335 minimum, but greater is accommodated.

procedure RetainVPESourceFile(call (eg in ReportWriter.OnConfigure) to force the base VPE source file to be retained.
VPESourceFileName: string); a filename for the VPE source file (rather than a temporary file)
(this file is saved in addition to any output pdf or html file etc)

property SelectedCustomFormatindex: Integer; marks the selected custom format index, 1..CustomFormatCount
default = 0, none selected. See following "Custom Formats" section.)

procedure SendFileByEmail(send a file(s) by email per OnSendEmail event handler
AFileName: string); name of file to be sent
procedure SendSelectedFilesByEmail(send a selection of files by email per OnSendEmail event handler
ADefaultFolder applied as InitialDir in the TOpenDialog
ADefaultExt applied as DefaultExt in the TOpenDialog
AFilter: string); applied as Filter in the TOpenDialog
property TitleSetup: string; setup form caption (if not specified, returns Reportinterface.DefaultTitleSetup)
property TitleStatus: string; status form caption (if not specified, returns Reportinterface.DefaultTitleStatus)
property UsePageFooterTitle: Boolean; if False, the page footer title is hidden and not output (default True)
property UsePageHeaderSubTitle: Boolean; if False, the page header subtitle is hidden and not output (default True)
property UsePageHeaderTitle: Boolean; if False, the page header title is hidden and not output (default True)
property UsePageTitles: Boolean; if False, hides the header/footer title GroupBox in setup (default True)
(includes the System title group box or an assigned ReportTitleGroupBox)
function ValidateSetup(allows ReportWriter.OnSetupValidate event to be called manually
ASetupAction: TBatchOutputAction): Boole intended setup action
TBatchOutputAction output actions that can be selected from setup
baPreview intended output action is previewing report
baPrint intended output action is printing report
baFile intended output action is filing report
baEmail intended output action is emailing filed report

Page 39 of 62

VPE+ Application Reporting Interface

ﬁ“ VPE+ ReportWriter (TReportWriter) Event Handlers

Report Generation Events NB Reports in a multi-report batch can be identified per Reportinterface.Batchindex.

property OnConfigure;

property OnGenerate;
property OnGenerateStart;
property OnGenerateEnd,
property OnPageStart;
property OnPageEnd;

property OnReportFileName(
Reportinterface: TReportinterface;
ReportWriter: TReportWriter;
OutputFormat: TFileOutputFormat;
AFormatindex,
AReportTag: Integer;
var APath,
AName,
AEXt: string);

property OnFileOutput(
Reportinterface: TReportinterface;
ReportWriter: TReportWriter;
AFileName: string;
var IsTemporary: Boolean);

property OnStreamBefore(
OutputFormat: TOutputFormat;
var AllowStream: Boolean);

property OnStreamOutput(
Reportinterface: TReportinterface;
ReportWriter: TReportWriter;
OutputFormat: TOutputFormat;
ReportStream: TVPEStream;
ReportTag: Integer);
var IsTemporary: Boolean);

property OnGenerateException(
Reportinterface: TReportinterface;
ReportWriter: TReportWriter;
ReRaise: Boolean)

Allows the Reportinterface or ReportWriter components to be configured as required.
NB The VPE doc is NOT open at this point.

Main point of execution for VPE report code.

Fires just before the report generation process starts.

Fires just after the report generation process ends.

Fires just after a new page is started (for first page, and when NewPage is called).
Fires just before a page is finished (when NewPage is called and for last page).

allows a report filename to be assigned, default = OutputFileName
Reportinterface component managing the reporting process
ReportWriter generating the report

format of report file

if OutputFormat = ofCustomFile, the index of the custom format
the report tag assigned to the report (default = 0)

the report file path name

the report file name

the report file name extension

Allows an output file to be saved to a database, for example.
Reportinterface component managing the reporting process
ReportWriter generating the report

name of output file.

Output file will be deleted if True or set True.

Allows streaming of an output file via OnStreamOutput to be prevented.
format of output file to be streamed, which occurs only if Assigned(OnStreamOutput).
if False, prevents OnStreamOutput streaming the output file (default = True).

Creates and exposes a report memory stream (can be prevented in OnStreamBefore).
Reportinterface component managing the reporting process

ReportWriter generating the report

format of output file being streamed.

the report stream (created by VPE CreateMemoryStream).

the user defined option tag assigned to the report.

Output file will be deleted if True or set True.

Allows processing of an exception raised while generating a report.

Reportinterface component managing the reporting process

ReportWriter generating the report

set True to re-raise the exception with a call to CheckAborted (default = False).
if not Assigned(OnGenerateException), CheckAborted is called by default.
(see error management details below)

Page 40 of 62

VPE+ Application Reporting Interface

ﬁ“ VPE+ ReportWriter (TReportWriter) Event Handlers

ReportWriter Setup Events Use the default setup form, or provide an alternative per OverrideSetup event.
property OnPreviewConfigure(Allows the preview panel to be configured before showing a report
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
ReportWriter: TReportWriter; ReportWriter generating the report

PreviewConfigureState: TPreviewConfigureState);
indicates the action performed in opening the document

OnPreviewConfigure always fires AFTER a document is OPENED, but BEFORE previewing it.
Set preview window layout properties in ReportWriter.PreviewWindow

TPreviewConfigureState output actions that can be selected from setup
pcsFirstReport about to preview the first report (preview form is showing for the first time)
pcsSwitchReport about to preview another (batched) report (preview may already be configured OK)
pcsUserAdjustment report is being re-opened to accommodate a user adjustment (eg toggling grid lines or rulers)
property OnSetupBefore(Fires just before the setup form is shown.
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
ReportWriter: TReportWriter);
property OnSetupValidate(Allows validation of setup details and return to setup if rejected.
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
ReportWriter: TReportWriter; ReportWriter generating the report
SetupAction: TBatchOutputAction; The intended action to take following setup: baPreview, baPrint, baFile, baEmail
var Accept: Boolean); if False, rejects details and re-shows the setup form (default = True).
property OnSetupAfter(Allows setup to be rejected (after it has been accepted by the user).
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
ReportWriter: TReportWriter; ReportWriter generating the report
var Accept: Boolean; if False, cancels report generation altogether (default = True).
var ReasonSetupRejected: string); optionally provide a reason for setup rejection (to be included in AbortReasonMessage)
NB Read the setup state from properties SelectedSetupAction, SelectedSetupMode, SelectedFormat and SelectedFormatindex.
property OverrideSetup(Allows an alternative setup form to be used during the report process.
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
ReportWriter: TReportWriter; ReportWriter generating the report
OverrideState: TOverrideFormState; indicates form state to implement: ofsFree, ofsCreate, ofsShow, ofsHide
var OverrideForm: TForm; the override form instance as created and returned when OverrideState = ofsCreate.
OptionTag: Integer); an optional tag to be used for setup options
Email Event Allows report(s) to be sent by email.
procedure OnSendEmail(Fires in response to request to email a report(s).
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
ReportWriter: TReportWriter; ReportWriter generating the report
AttachSummary: String; summary string describing reports attached
AttachList: TStrings); list of reports to be included as attachments (giving full file name)

Page 41 of 62

VPE+ Application Reporting Interface

ﬁ“ VPE+ ReportWriter (TReportWriter) Custom Formats

In addition to the "system" output file formats handled by VPE, "custom" file formats may be added as extra output options available in the file
format selection list. Custom format name and file extension details must be provided through the event handler OnCustomFormatQuery, and a
suitable file generator through OnCustomFormatGenerate.

To output directly to a custom format (ie without selecting a format via the setup form GUI), set SelectedCustomFormatindex to the relevant
value (1..CustomFormatCount).

property SelectedCustomFormatindex: Integer; indicates which custom format option has been selected.
either set from users selection in a setup form,
or set in code prior to custom file output (SetupMode = smCustomFile, smEmailCustomFile)
else custom format indexes 1..CustomFormatCount.

property CustomFormatCount: Integer; specifies the number of custom file formats defined (indexed 1..CustomFormatCount).
property CustomFormatDefaultindex: Integer; indicates which custom format option is selected by default (1..CustomFormatCount, if any).
function CustomFormatExt(returns the file extension to be used for a custom format
AFormatindex: Integer): string; index of custom format
procedure QueryCustomFormat(allows custom format details to be queried per OnCustomFormatQuery event.
AFormatindex: Integer; index of custom format to be queried
out AFormatName, returns the custom format name
AFormatExt: string); returns the custom format file extension
procedure OnCustomFormatQuery(Event: for each custom format, a format name and file extension will be queried
Formatindex: Integer; index of the custom format (1..CustomFormatCount) to be described.
out FormatName: string; descriptive name for the custom format (eg 'CSV Text File').
out FormatExt: string); filename extension to use for this format (eg ‘csv').
NB called as required to populate format or filter lists etc.
procedure OnCustomFormatGenerate(Event: for each custom format, a file generator must be defined.
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
Formatindex: Integer; index of the custom format (1..CustomFormatCount) to be generated.
var OptionTag: Integer; optionally tag to assign to report (default = ReportWriter. TagReport).
var FileName, Description: string; filename and report description provided from setup - may be changed as required.
var GeneratedOK: Boolean); set True once the file has been generated OK (default = False).

if left False, or if an exception is raised, the error will be reported automatically.
additional error detail may be added by setting AbortReason.

Page 42 of 62

VPE+ Application Reporting Interface

3 Report Frames (TxxxFrame) Frames & Bands

Report frames introduce a banded structure about which to (optionally) design a report.

The various bands are described in the "Page Frame Metrics" diagramme shown later. Essentially, there are fixed-height bands at the top of the
page (Letterhead and PageHeader) and fixed-height bands at the bottom of the page (PageFooter, Letterfoot, Remittance), with dynamic-height
bands filling the space between.

Report code is executed in event handlers associated with each band. The parent frame controls the sequence in which these band events are
fired, and how they are cycled and terminated. Each band may have a default font and line tab set assigned via their Fontindex and TabIndex
properties. These indexes reference the fonts and line tab sets saved for the report in the Reportinterface.

In the absence of any frame components, Reportinterface effectively maintains a single band representing the entire printable area on a page.
Frames are useful, but entirely optional. You can still create a report without frames.

TPageFrame is the main frame component. It encapsulates a full page structure, and would be the base frame typically used for most reports.
Its DetailFrame property allows an additional TMasterFrame or TDetailFrame frame to be asigned and automatically executed as a "nested
frame" for master/detail reports.

Any TMasterFrame frame can, in turn, have a further TMasterFrame or TDetailFrame nested via its own DetailFrame property. Master or detail
frames can also be executed directly at any time, meaning there is no limit to the number of sub-frames that can be used in a report.

Note that each frame has a single inherent "loop" in its structure which continues cycling until its respective "Valid" property is set to False in
code. These loops can, for example, be used to cycle through a dataset, but this is optional since you can also cycle the dataset yourself using a
while/next loop if that is more convenient. If your data is subdivided with header/footer structure, or you wish to automatically trip a new page
based on remaining line count or remaining height, then a frame component will probably be the option of choice. If there is no further structure
of this sort, then a simple local loop with your own check for remaining space will suffice.

TLabelFrame is a special frame designed to cycle and generate labels in multiple columns and rows.

The structure and loop control of each of these frames is diagrammed on following pages. Properties and functions related to page metrics are
summarised below.

Page Boundaries & Margins

Page margins (distance from the respective page edge) demarcate the printable area.

property PaperMarginLeft: Double; left paper margin (relative to left paper edge)
property PaperMarginTop: Double; top paper margin (relative to top paper edge)
property PaperMarginRight: Double; right paper margin (relative to right paper edge)
property PaperMarginBottom: Double; bottom paper margin (relative to bottom paper edge)

Paper margins can be set collectively using SetPaperMargins or BumpPaperMargins. If a band has already been setup, call its'
ResetBandBoundaries method to re-adjust the band accordingly, or call its' ResetBand method to also reset band fonts and tabs. These
methods are described below in the section "Adjusting Bands On the Fly".

Page boundaries (in X, Y axis distances) are determined by the respective paper margins and paper size.

function PaperLeft: Double; left side of printable paper area (relative to left paper edge)
function PaperTop: Double; top of printable paper area (relative to top paper edge)
function PaperRight: Double; right side of printable paper area (relative to left paper edge)
function PaperBottom: Double; bottom of printable paper area (relative to top paper edge)
PaperTop PaperBottom PaperMarginTop
1 b
PaperLeft [— i
PaperMarginLeft <—>i «— PaperMarginRight
PaperRight i
______ —
PaperMarginBottom
Paper Boundaries & Printable Area Paper Margins & Printable Area

Page 43 of 62

VPE+ Application Reporting Interface

3 Report Frames (TxxxFrame) Frames & Bands

The space on a "page" or piece of paper is indicated by:

property PaperHeight: Double;
property PaperWidth: Double;
function PaperPrintHeight: Double;
function PaperPrintWidth: Double;

function PaperPrintHeightLeft: Double;

function PaperPrintWidthLeft: Double;

function EnoughPaperPrintHeight(
HeightNeeded: Double): Boolean;

function EnoughPaperPrintWidth(
WidthNeeded: Double): Boolean;

NOTE:

height of the paper used (full printable and non-printable extent)
width of the paper used (full printable and non-printable extent)
available printable paper height within the paper margins
available printable paper width within the paper margins

remaining printable paper height between current YPos and PaperBottom

remaining printable paper width between current XPos and PaperRight

True if remaining printable paper height accommodates the height needed

print height needed

True if remaining printable paper width accommodates the width needed

print width needed

The various "PaperPrintXXX" and "EnoughPaperPrintXXX" functions refer to the printable area of the full page.
Use the corresponding "BandXXX" and "EnoughBandXXX" functions to reference the current band instead.

Band Boundaries & Margins

Band boundaries (in X, Y axis distances) are set dynamically within the page constraints. Reset them if required.

property BandLeft: Double;
property BandTop: Double;
property BandRight: Double;
property BandTop: Double;

Assessing Band Space:

function BandHeight: Double;

function BandHeight(
BandType: TBandType): Double;

function BandHeightLeft: Double;
function BandLinesLeft: Integer;
function BandWidth: Double;

function BandWidth(
BandType: TBandType): Double;

function BandWidthLeft: Double;

function EnoughBandHeight(
HeightNeeded: Double): Boolean;

function EnoughBandLines(
LinesNeeded: Integer): Boolean;

function EnoughBandWidth(
WidthNeeded: Double): Boolean;

Miscellaneous

function PaperCentreXPos: Double;
function PaperCentreYPos: Double;
function BandCentreXPos: Double;

left side of band (relative to left paper edge)
top of band (relative to top paper edge)

right side of band (relative to left paper edge)
bottom of band (relative to top paper edge)

returns height of current band (ie height available to band)

returns height of a band
type of band to return height for

returns remaining band height between current YPos and BandBottom
returns number of remaining lines using current font
returns width of current band (ie width available to band)

returns width of a band
type of band to return width for

returns remaining band width between current XPos and BandRight

returns True if enough space to fit a given output height
height to fit

returns True if enough space to fit a given number of output lines
number of lines to fit using current font

returns True if enough space to fit a given output width
width to fit

centre XPos of the paper printable area width
centre YPos of the paper printable area height
centre XPos of the band héighfunction BandCentreYPos: Double;

Page 44 of 62

VPE+ Application Reporting Interface

3 Report Frames (TxxxFrame) Frames & Bands

Using a Remittance Band (for PageFrame only)

A remittance band is an optional fixed band which must be manually engaged by calling EnableRemittance, typically in OnBodyFooter. It is
placed at the bottom of a page below the PageFooter/Letterfoot bands, and immediately above the paper bottom margin. It may be used for the
tear-off remittance advice section of an invoice, for example, or for any similar purpose.

EnableRemittance does NOT confirm there is sufficient space to accommodate the remittance band, but simply allocates the (fixed) band in the
correct place. Check EnoughSpaceForRemittance and start a new page if it returns False. Remember to call ResetBand to reset band metrics
on the new page if you call NewPage.

function EnableRemittance(returns True if a remittance band is successfully enabled (band height must be over 0)
ARemittanceHeight: Double = NA): Boolea height to reserve - if NA (default), PageFrame.BandRemittance.Height is used.

function EnoughSpaceForRemittance(returns True if the remittance band can be accommodated on the current page
ARemittanceHeight: Double = NA): Boolea height required - if NA (default), PageFrame.BandRemittance.Height is used.

procedure DisableRemittance; disables remittance band on current page

property RemittanceHeight: Double; sets or gets the remittance band height

property UseRemittance; directly enables or disables the remittance band on the current page

property UseRemittanceHeight: Double; directly sets the height of the remittance band

Adjusting Bands "On the Fly"

Typically, report frames will process the various bands according to frame structure and assigned properties, setting bands up automatically and
triggering them as appropriate. However, it is possible to manipulate and trigger bands more "manually" when the need arises.

This is done, for example, in printing the "Page Metrics" diagramme shown following this section. In this case, the TPageFrame band structure is
used to generate the diagramme, but is placed entirely within the "report body area" of the greater report (which has its own header/footer
details). This involves four key manipulations:

1. Changing the paper margins so the printable area fits entirely within the "report body area" (using "BumpPaperMargins").

2. Setting up band boundaries on demand (using "SetBandBounds").

3. Differentially adjusting the "Use" height of a fixed band for a given page (see "Use" properties below). Specifically, the PageFooterHeight " is
increased to 1 cm to accommodate the extra diagramme details included.

4. Restoring paper and band settings so that the page footer again matches all other pages (ie reversing the changes made above with
ResetPageFooterHeight and ClearPaperMarginBumps etc).

To adjust the boundaries for the page or for a band, use:

procedure BumpPaperMargins(applies temporary "bumps" to the paper margins (NA = no bump)
ALeft, ATop, ARight, ABottom: Double); paper margin bumps to apply (NA = no bump)

procedure ClearPaperMarginBumps; removes any paper margin bumps applied using BumpPaperMargins

procedure SetPaperSize(sets the paper size (by width & height - also see overloaded procedure)
APaperOrientation: TPaperOrientation; the paper orientation to which the dimensions apply

APaperWidth, APaperHeight: Double); ove the width and height of the paper

procedure SetPaperSize(sets the paper size (by VPE "PaperFormat" - also see overloaded procedure)
PaperSize: TPaperFormat); overload; the VPE paper format to apply (eg "VPAPER_A4" - see VPE documentation)
procedure SetPaperMargins(sets the paper margins

AlLeft, ATop, ARight, ABottom: Double); paper margins to apply (NA = no change)

procedure SetBandBounds(sets the band bounds to utilise all available band space
BandType: TBandType; type of band to set bounds for
btFullPage, btRemainingPage, btFullBody
btLetterhead, btPageHeader, btBodyTitle, btBody
btPageFooter, btLetterfoot, btRemittance
RetainTopBoundary: Boolean = False); True to retain original top position of a dynamic band rather than use the current YPos.

The height used for fixed page bands is calculated when a PageFrame first executes (and so can be subsequently overridden). It is first
defaulted to the property defined under Reportinterface.DefaultFixedBandHeights:

eg Reportinterface.DefaultFixedBandHeights.PageFooterHeight
This value is overridden by the Height property (if set) of the respective band as defined in the PageFrame:

eg PageFrame.BandPageFooter.Height
grag g '9 Page 45 of 62

VPE+ Application Reporting Interface

3 Report Frames (TxxxFrame) Frames & Bands

You may override this value in code by setting the "Use" properties listed below. Either use these properties BEFORE the respective band is
setup, or use ResetBand to force band setup. Changes to these properties remain in effect for all subsequent pages in the document. To restore
a fixed bands default height, call the respective height "Reset" procedure.

property UseLetterheadHeight: Double;
property UseletterfootHeight: Double;
property UsePageHeaderHeight: Double;
property UsePageFooterHeight: Double;
property UseRemittanceHeight: Double;
procedure ResetlLetterheadHeight;
procedure ResetLetterfootHeight;
procedure ResetPageHeaderHeight;
procedure ResetPageFooterHeight;
procedure ResetRemittanceHeight;

Manually adjusting a bands boundaries, or changing fixed bands which impact on the placement of the current band, or calling NewPage within
a band, will potentially invalidate current band settings (boundaries, fonts, tabs). To reinstate band settings (ie setup the band again), call the
bands ResetBand or ResetBandBoundaries method.

procedure ResetBand(resets boundary, font, tab and cursor settings

RetainTopBoundary: Boolean = False); True to retain original top position of a dynamic band rather than use the current YPos.
procedure ResetBandBoundaries(resets boundaries (but not font, tab and cursor settings)

RetainTopBoundary: Boolean = False); True to retain original top position of a dynamic band rather than use the current YPos.

Band Properties and Behaviour

Each time a band is executed within a frame, the bands SetupBand method is called to set boundaries and apply font and tab settings as
appropriate. For dynamic bands, band height and line constraints (if defined) are checked, and a new page may be automatically triggered. The
OnTripPageBefore and OnTripPageAfter events allow you to intercept these automatic page breaks and take action if necessary.

The following properties are common to all bands:
property Fontindex: Integer; restores a saved font (1..10) when SetupBand called (default O, font left unchanged)
property Tablndex: Integer; restores a saved line tab set (1..10) when SetupBand called (default 0, tabs left unchanged)

For fixed bands (Letterhead, Letterfoot, PageHeader, PageFooter, Remittance):

property Height: Double; fixed height allocated to band
if 0, Reportinterface default heights (from DefaultFixedBandHeights) are applied

For dynamic bands (BodyHeader, BodyFooter, GroupHeader, GroupFooter, Row):

property MinHeight: Double; minimum band height required before a NewPage is called in SetupBand
default 0, no mimimum height constraint applies
property MinLines: Integer; minimum number of lines (using bands font) required before a NewPage is called in SetupBand

default 0, no mimimum lines constraint applies

PageFrames and MasterFrames both support an automatically nested detail frame, being a MasterFrame or a DetailFrame:
(but any number of frames may be nested within a report structure)

property DetailFrame: TDetailFrame; sets the nested frame that will be called to implement the Detail band of the parent frame.

PageFrames, MasterFrames and DetailFrames provide the following page events:

property OnTripPageBefore(fires before a new page is triggered due to space constraints
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
ReportWriter: TReportWriter; ReportWriter generating the report
ReportFrame: TReportFrame; ReportFrame in which the new page has been triggered
ReportBand: TReportBand); band in which the new page has been triggered

property OnTripPageAfter(fires after a new page has been triggered due to space constraints
Reportinterface: TReportinterface; Reportinterface component managing the reporting process
ReportWriter: TReportWriter; ReportWriter generating the report
ReportFrame: TReportFrame; ReportFrame in which the new page has been triggered
ReportBand: TReportBand); band in which the new page has been triggered

Page 46 of 62

VPE+ Application Reporting Interface

3 Report Frames (TxxxFrame) Frames & Bands

Page Frame Metrics

The following diagramme illustrates band layout on the printable area of the paper. Fixed band heights shown reflect the actual defaults for
these bands, with whatever page height remains in the diagramme being allocated to the dynamic report body area.

Letterhead Band
when UseLetterhead = True UseLetterheadHeight (20.0mm)

Band Bounds

PageHeader Band
when UsePageHeader = True UsePageHeaderHeight (15.0mm)

Band Bounds

Body of Report
(includes BodyTitle, Body, Group, Row and Detail bands etc) Report Body Height (73.1mm)

A BodyTitle band is fixed in place immediately following the fixed PageHeader
band, but is nonetheless a dynamic band dependent on output code in
OnBodyTitle. It is useful for the column headings of a table of data, for
example.

Additional (dynamic) bands within the report body are created through the use
of report sub-frame components (TMasterFrame and TDetailFrame).

[«— Printable Area

Band Bounds

PageFooter Band

when UsePageFooter = True UsePageFooterHeight (10.0mm)
Band Bounds

Letterfoot Band

when UseLetterfoot = True UseLetterfootHeight (10.0mm)
Band Bounds

Remittance Band
Optional “tear-off" band for PageFrame UseRemittanceHeight (20.0mm)

Band Bounds

Page 47 of 62

% Report Frames (TPageFrame) Page Frame

A framework providing page structure for a report.
Can be executed per Execute(ReportWriter) method.
Allows an additional sub-frame to be called (per PageFrame.DetailFrame) - either a TMasterFrame or TDetailFrame.

Report

Page

Body

Group loop

function IsTopOfPageBody: Boolean;

OnReportBefore
BandReportHeader setup
OnReportHeader

OnPageBefore

if Reportinterface.UselLetterhead then
BandLetterhead setup
Onletterhead

if Reportinterface.UsePageHeader then
BandPageHeader setup
OnPageHeader

BandBodyTitle setup

OnBodyTitle

OnBodyBefore
BandBodyHeader setup
OnBodyHeader

OnGroupBeforeFirst
repeat
OnGroupBefore(Valid)
if Valid then
begin
BandGroupHeader setup
OnGroupHeader

BandRow setup
OnRowBefore(Valid)
if Valid then
OnRow(Valid)
OnRowAfter(Valid)

if Valid then
OnDetailBefore(Valid)
if Valid then
DetailReport.Execute
OnDetailAfter(Valid)
end

BandGroupFooter setup
OnGroupFooter
end
OnGroupAfter(Valid)
until not Valid
OnGroupAfterLast

BandBodyFooter setup
OnBodyFooter
OnBodyAfter

if Reportinterface.UsePageFooter then
BandPageFooter setup
OnPageFooter

if Reportinterface.UseLetterfoot then
BandLetterfoot setup
OnlLetterfoot

if Reportinterface.UseRemittance then
BandRemittance setup
OnRemittance

OnPageAfter

BandReportFooter setup
OnReportFooter
OnReportAfter

VPE+ Application Reporting Interface

ReportHeader is outside the (fixed band) page structure.
A new page is automatically started after a ReportHeader

INTERFACE FIXED BAND DEFAULTS: Letterhead,
PageHeader, PageFooter and Letterfoot fixed bands are
enabled and sized by default using Reportinterface properties
DefaultFixedBandEnabled and DefaultFixedBandHeights. The
latter also sets a default height for the Remittance band, but
this must be enabled using PageFrame.EnableRemittance.

FIXED BAND CONTROL: In ReportWriter.OnExecuteReport,
override the default fixed band properties by:

> Enabling/Disabling bands using properties UselLetterhead,
UsePageHeader, UsePageFooter, Useletterfoot (T/F)

> Setting band heights using properties UseLetterheadHeight,
UsePageHeaderHeight, UsePageFooterHeight,

Usel etterfootHeight.

BodyTitle follows the fixed PageHeader band, but its height is
dynamic, allowing column headers to be output, for example,
immediately prior to the body of the report.

GROUP LOOP: The single ("repeat") loop within the body of
the PageFrame is a master/detail loop. ie One loop is made for
each primary ("master") row, with the next master row typically
being called in OnGroupAfter.

For a simple loop without repeatedly cycling this structure, data
records can be cycled within the OnRow handler instead.

BAND SETUP: SetupBand applies the bands font and line tab
set (if defined).

Band boundaries reflect the page extent available to the
current band and can be referenced in Reportinterface
(BandLeft, BandTop, BandRight, BandBottom).

A manual call to SetupBand will recalculate boundaries, but
otherwise they remain static on the same page.

BAND REPRINTING: Dynamic bands can be re-printed (eg
after a new page is manually initiated) by calling these
procedures:

PrintBodyHeader, PrintBodyFooter

PrintGroupHeader, PrintGroupFooter

REMITTANCE: Call PageFrame.EnableRemittance (typically in
OnBodyFooter) to enable this band with the height specified by
BandRemittance.Height or
Reportinterface.DefaultFixedBandHeights.RemittanceHeight.
Check PageFrame.EnoughSpaceForRemittance first, and call
NewPage if necessary.

The band is automatically disabled when processed, but
otherwise call PageFrame.DisableRemittance.

ReportFooter is outside the (fixed band) page structure.
A new page is automatically started before a ReportFooter.

returns True if YPos is at the top of the body of the page

Page 48 of 62

VPE+ Application Reporting Interface

m Report Frames (TMasterFrame) Master Frame

A report sub-frame providing a master/detail structure without the page elements of TPageFrame.
Can be used as a detail frame for a TPageFrame, or executed independently per Execute(ReportWriter) method.
Allows an additional sub-frame to be called (per MasterFrame.DetailFrame) - either another TMasterFrame or TDetailFrame.

Bodv OnBodyBefore
y BandBodyHeader setup
OnBodyHeader

OnGroupBeforeFirst
repeat GROUP LOOP: As with TPageFrame, the single ("repeat") loop

G I
roup foop OnGroupBefore(Valid) within the body of the MasterFrame is a master/detail loop. For

if Valid then a simple loop without repeatedly cycling this structure, data
begin records can be cycled within the OnRow handler instead.
BandGroupHeader setup
OnGroupHeader BAND REPRINTING: Dynamic bands can be re-printed (eg

BandRow setup

after a new page is manually initiated) by calling these
procedures:

= OnRowBefore(Valid
Row if Valid then () PrintBodyHeader, PrintBodyFooter
OnRow(Valid) PrintGroupHeader, PrintGroupFooter
—> OnRowAfter(Valid)
Detail if Valid then
OnDetailBefore(Valid)
if Valid then
DetailReport.Execute
OnDetailAfter(Valid)
—> end
BandGroupFooter setup
OnGroupFooter
end

OnGroupAfter(Valid)
—— until not Valid
OnGroupAfterLast

BandBodyFooter setup
OnBodyFooter
—— > OnBodyAfter

% Report Frames (TDetailFrame) Detail Frame

A report sub-frame providing a simple detail structure without the page & group elements of TPageFrame and TMasterFrame.

Can be used as a detail frame for a TPageFrame or TMasterFrame, or executed independently per Execute(ReportWriter) method.

Bodv OnBodyBefore
y BandBodyHeader setup
OnBodyHeader

repeat ROW LOOP: The single ("repeat") loop within the body of the
BandRow setup DetailFrame sets up the row band on each cycle.
OnRowBefore(Valid) For a simple loop without repeatedly cycling this structure, data
if Valid then records can be cycled within the OnRow handler instead.
OnRow(Valid)
OnRowAfter(Valid)
until not Valid

Row

BAND REPRINTING: Dynamic bands can be re-printed (eg
after a new page is manually initiated) by calling these
procedures:

BandB F r
andBodyFooter setup PrintBodyHeader, PrintBodyFooter

OnBodyFooter
—— > OnBodyAfter

Call a bands ResetBand procedure to reset its font and line tabs and top boundary (BandTop). The top boundary can also be optionally reset
with a call to ResetBandBoundaries(Reportinterface, False), but otherwise it remains fixed on any given page.

Page 49 of 62

VPE+ Application Reporting Interface

3 Report Frames (TLabelFrame) Label Frame

Outer Label Edge (label extent)

A report frame for generating labels. Code label output in the OnLabel event.

Execute the label report per Execute(ReportWriter) method.

>

Report

v

Page

v

Label page loop

Label loop

———
Label

v

v

OnReportBefore
OnPageBefore l+—Text Margins (from page edge)—»
while Valid do
begin
while Valid do
begin
BandLabel setup
Set LabelRow, LabelColumn

Label Border Line (optional)

A page of labels is defined by the various
properties indicated in the diagramme below.

OnLabelBefore(Valid) For continuous (or roll) labels which are
if Valid then generally a single colunm wide, the
Draw label border SpaceHorizontal property can be set to
Draw text border & background Labelwidth.
OnLabel(Valid)
OnLabelAfter(Valid) For each label on the page, the frames
end BandLabel is reset to represent the printable
)) label area defined by the TextMargins (ie the
if Valid then area within the text margin bounds).
NewPage;
end Optionally, a label border can be printed around
OnPageAfter the label content.
OnReportAfter

See the various label properties below for
further details.

Example: a label page of 4 labels (2 across and 2 down)

LabelPageTop

le—LabelPageL eft—»

SpacingVertical

SpacingHorizontal l—LabelPageRight—

LabelHeight

LabelWidth————————

LabelPageBottom

The label page layout and label dimensions are described by the following properties:

property LabelPageLeft: Double;
property LabelPageTop: Double;
property LabelPageRight: Double;
property LabelPageBottom: Double;
property SpacingHorizontal: Double;
property SpacingVertical: Double;
property LabelWidth: Double;
property LabelHeight: Double;
property LabelPageWidth: Double;
property LabelPageHeight: Double;

Left page edge to left edge of first label column.

Top page edge to top edge of first label row.

Right page edge to right edge of last label column.

Bottom page edge to bottom edge of last label row.

Space between left edges of adjacent label columns.

Space between top edges of adjacent label rows.

Width of label.

Height of label.

Width of label page derived from assigned label metrics (read only).

Height of label page derived from assigned label metrics (read only).
Page 50 of 62

VPE+ Application Reporting Interface

3 Report Frames (TLabelFrame) Label Frame

The label array and label print sequence are described by the following properties:

property LabelColumns: Integer;
property LabelRows: Integer;
property LabelOrder: TLabelOrder;

property LabelSkipCount: Integer;
property LabelStartColumn: Integer;
property LabelStartRow: Integer;
property LabelColumn: Integer;
property LabelRow: Integer;
property Labellndex: Integer;
property LabelPagelndex: Integer;

Number of label columns per label sheet.
Number of label rows per label sheet (1 for continuous).

direction in which labels are printed

TLabelOrder: loByRow (default, across then down) or loByColumn (down then across)

Labels to skip on first sheet.

Starting column of first label on first sheet.

Starting row of first label on first sheet.

Current label column being printed.

Current label row being printed.

Index of current label being printed (1..LabelCount).

Index of current label on the page (1..LabelsPerPage).

The optional label border and background colour are described by the following properties:

property LabelBorder: TBorderType;

printed label border type: btNone (default), btRect, or btEllipse

property LabelBorderBackgroundColour: TColor; background colour applied within label border: cINone (default)

property LabelBorderCornerRadius: Double;

property LabelBorderPenWidth: Double;

property LabelBorderPenColour: TColor;
property LabelBorderMargins: TMargins;

property DrawLabelExtents: Boolean;

only applied with a LabelBorder (btRect or btEllipse)
rounds the corners of a btRect label border: 0 (default)

label border pen width: 0.3 mm (default)
use 0 to allow a background colour without a boundary line

border line colour: cIBlack (default)
label border margins relative to label edges: LabelBorderPenWidth / 2 (default)

set true to draw a line around the outer edge of a label.

The printable area of a label is defined by the text margins, and represented by the label band:

property TextMargins: TMargins;

property BandLabel: TLabelBand;

margins for text boundaries within label edges
defines the printable area
Defaults: Left 5 mm, Top 2 mm, Right 5 mm, Bottom 2 mm

the band representing the printable area within a given label,
dynamically changes for each label as appropriate
set the TextMargins to define the printable label area

property LabelPaperOrientation: TPaperOrientation; sets the print orientation on the label

The label frame can optionally apply page size and page margin settings:

property AutoPageSetup: Boolean;

if true, the frame sets the paper size and margins (default True)
otherwise, SetPaperSize and SetPaperMargins can be called manually.

Page 51 of 62

VPE+ Application Reporting Interface

BEE Report Frames (TColumnFrame) Column Frame

Use TColumnFrame to manage output in columns. Start by defining columns using the methods AddColumn or AddColumnWidth (to add
sequential columns one at a time) or AddColumns (to add a number of equal width columns). Column boundaries are relative to the left side of
the column frame, which can in turn be placed anywhere on the page. Once the ColumnFrame has been executed, you cannot add further
columns, or alter existing column definitions (but you can move the column frame).

By default, the frame is placed to fill the remaining space in the active band (from BandLeft and the current YPos) when it is executed, so ensure
the correct band boundaries are applied at the time. Call a bands ResetBand method if necessary. However, the frame can be repositioned (ie
change its top left position) using the method PlaceColumnFrame, allowing column output to be directed to different areas of the same page, or
to another page as required. The height of the column block can be adjusted using methods SetColumnFrameBottom or
SetColumnFrameHeight - the block does not have to fill the page.

Call the frames Execute method to start column output. OnColumnFrameBefore allows the frames initial position to be adjusted, or resources to
be accessed. Note that if you include other report output in this handler, it may encroach on the already allocated column output space, so
remember to move the frame accordingly using eg PlaceColumnFrame(NA, YPos). Clean-up can be handled in OnColumnFrameAfter. Once
executed, you can only change the relative column frame position, or the height available for column output.

Columns have methods and properties similar to those of bands to indicate boundaries and space remaining (see below). Use these methods
rather than the band methods (although the latter are still valid). Call NextColumn (rather than NewPage) to start a new column. When called in
the last column, NextColumn will return to the first column and notify you in OnColumnFrameRestart. You must call NewPage in this event
handler if appropriate, or otherwise reposition the column frame to continue output.

Column headers or line tabs for column output can be set in OnColumnBefore. TextBlocks can be output to columns using PrintColumnText.
Otherwise, output to columns is no different from output to bands.

» OnColumnFrameBefore
Frame

Restart OnColumnFrameRestart

OnColumnBefore The "loop" in a ColumnFrame is controlled in your OnColumn

———»
NextColumn code by calls to NextColumn. After the last column, output

OnColumn returns to the first column and OnColumnFrameRestart is called
to allow the frame to be repositioned. This event does NOT fire
OnColumnAfter on the first cycle.

» OnColumnFrameAfter

Column Frame functions:

function ColumnCount: Integer;
function ColumnCentreXPos: Double;

function ColumnCentreXPos(
AColumnindex: Integer): Double;

function ColumnHeightLeft: Double;
function ColumnLeft: Double;

function ColumnLeft(
AColumnindex: Integer): Double;

function ColumnLinesLeft: Integer;
function ColumnRight: Double;

function ColumnRight(
AColumnindex: Integer): Double;

function ColumnWidth: Double;

function ColumnWidth(
AColumnindex: Integer): Double;

function EnoughColumnHeight(
HeightNeeded: Double): Boolean;

function EnoughColumnLines(
LinesNeeded: Integer): Boolean;

returns the number of columns defined
returns the centre XPos of the current column

returns the centre XPos of a particular column
index of the column (1-based)

returns the height remaining in the current column
returns the left boundary of the current column

returns the left boundary of a particular column
index of the column (1-based)

returns the number of lines remaining in the current column
returns the right boundary of the current column

returns the right boundary of a particular column
index of the column (1-based)

returns the width of the current column

returns the width of a particular column
index of the column (1-based)

returns True if the current column will accommodate a given height

the height needed

returns True if the current column will accommodate a given number of lines

the number of lines needed

Page 52 of 62

VPE+ Application Reporting Interface

BEE Report Frames (TColumnFrame) Column Frame

Column Frame procedures:

procedure AddColumn(adds the next sequential column definition
Aleft, the left column boundary relative to the column frames left
ARight: Double); the right column boundary relative to the column frames left
procedure AddColumns(adds a number of equal columns to fill a given width
AColumnCount: Integer; the number of columns to add
AColumnFrameWidth, the width in which the columns must fit
AColumnGap: Double); the gap to use between columns
procedure AddColumnWidth(adds the next sequential column definition with a given width
AColumnWidth, the width of the column
AColumnGap: Double); the gap to use after the previous column
procedure ClearColumnList; clears existing column definitions
procedure Execute; executes the column frame
procedure NextColumn; moves to the next column, or back to the first column
procedure PlaceColumnFrame(repositions the column frame
AlLeft, the left position of the column frame
ATop: Double); the top position of the column frame
procedure SetColumnFrameBottom(sets the bottom position of the column frame
ABottom: Double); the bottom position
procedure SetColumnFrameHeight(sets the height of the column frame
AHeight: Double); the height

Column Frame properties:

property ColumnFrameBottom: Double; returns the bottom extent of the column frame (or columns)
property ColumnFrameTop: Double; returns the top extent of the column frame (or columns)
property Columnindex: Integer; returns the curren tcolumn index (1-based)

property ReportWriter: TReportWriter; the TReportWriter generating the report

(must be set before executing the column frame)

Printing Text Blocks to Columns

You can use a TTextBlock to automatically output blocks of text to columns. Configure and open a TTextBlock with the desired text, then pass it
to the method PrintColumnText.

procedure PrintColumnText(outputs blocks of text to columns
ATextBlock: TTextBlock; an opened TTextBlock object
AColumnTextMode: TColumnTextMode); controls how the text is output
TColumnTextMode column text output modes
ctmFillColumns columns are sequentially filled, top to bottom then across as defined
ctmEvenColumns the column frame height is re-calculated to fit the text evenly across all columns

When printing text in ctmFillColumns mode, text will follow on from whatever has already been output to the columns, proceeding down then
across. You can then follow with more output as required. However, using ctmEvenColumns mode necessarily dedicates the column frame to
the text block exclusively because the columns are adjusted to achieve an even fill with the text being output.

Note also that while you can easily output text in the OnColumnFrameBefore handler, the default column frame output zone will probably
overwrite it - so remember to relocate the frame accordingly (using method PlaceColumnFrame).

Page 53 of 62

VPE+ Application Reporting Interface

FE*

VPE+ Report Interface (TReportinterface) Arrows

Arrows can be drawn using the method DrawArrow. The size and shape of the arrow is set or adjusted using the various properties and methods

described below. Call SetDefaultArrow to start with a default arrow (see the default specifications below).

Arrow dimensions can be set collectively using the method SetArrowDimensions. Pass brush colour clNone or NA to DrawArrow to set a

transparent brush, giving the arrow an outline according to the pen settings.

procedure DrawArrow(
FromX,
FromY,
ToX,
ToY: Double;
APenWidth: Double = NA;
APenColour: TColor = NA;

APenStyle: TVPEPenStyle = psSolid;

ABrushColour: TColor = cIBlack);

~

draws an arrow from point (FromX, FromY) to point (ToX, ToY)

XPos of arrow starting point (“tail" of arrow)

YPos of arrow starting point (“tail" of arrow)

XPos of arrow end point ("head" of arrow)

YPos of arrow end point ("head" of arrow)

pen width for arrow lines (default = NA = pwNormal = 0.3 mm)

pen colour for arrow lines (default = NA = cIBlack)

pen style to use: psSolid (default), psDash, psDot, psDashDot, psDashDotDot
background brush colour (default = cIBlack; NA = cINone = transparent)

ArrowTailWidth

<+—— From(X, Y)

ArrowHeadWidth

¥
To(X, Y) > ArrowStemWidth
¥

i

A‘rrowHeadDept'h

NB VPE lines are drawn CENTRED on the respective coordinate, so a pen will extend a half pen width beyond the expected point.
ie The resultant width of the arrow stem is (ArrowStemWidth + ArrowPenWidth), and a plain line drawn to match the stem must use this width.

Drawing properties:

property ArrowHeadShape: TArrowShape;
property ArrowTailShape: TArrowShape;

shape of arrow head: asNone, asTriangle (default), asDot
shape of arrow tail: asNone (default), asTriangle, asDot

Dimension properties: (refer to the arrow diagramme above)

property ArrowHeadDepth: Double;
property ArrowHeadWidth: Double;
property ArrowTailDepth: Double;
property ArrowTailWidth: Double;
property ArrowStemWidth: Double;

Other arrow methods:

procedure ScaleArrow(
ArrowScaleFactor: Single);

procedure SetArrowDimensions(
StemWidth,
HeadDepth,
HeadWidth,
TailDepth,
Tailwidth: Double);

procedure SetDefaultArrow;

Defaults are:
ArrowHeadShape
ArrowTailShape
ArrowHeadDepth, ArrowTailDepth
ArrowHeadWidth, ArrowTailWidth
ArrowStemWidth

depth of arrow head (for asTriangle shape only), default 1.5 mm

width of arrow head (of asTriangle shape, or diameter of asDot shape), default 1.5 mm
depth of arrow tail (for asTriangle shape only), default 1.5 mm

width of arrow tail (of asTriangle shape, or diameter of asDot shape), default 1.5 mm

width of arrow stem, default 1/4 ArrowHeadWidth
NB ArrowStemWidth = 0 effectively draws an arrow stem at pen width.

scales the current arrow dimensions
factor by which to scale the arrow (the arrow pen is not scaled)

set the arrow dimensions collectively

width of arrow stem (the "line" component)

depth of the head triangle shape, not used for the head dot shape
width of the head triangle shape, or diameter of the head dot shape
depth of the tail triangle shape, not used for the tail dot shape
width of the tail triangle shape, or diameter of the tail dot shape

resets arrow dimension, pen and shading properties to defaults

= asTriangle;

= asNone;

=1.5mm

=1.5mm

= (ArrowHeadWidth / 4) = 0.375 mm

Page 54 of 62

VPE+ Application Reporting Interface

"E* VPE+ Report Interface (TReportinterface) Arrows

Some arrow examples:

ArrowScaleFactor (applied to default arrow size): Other arrow variations:
1
1 > < > < 9 [9
2 > <« > <« ® © J
2 > < > < O G O

— —p (

=
:

Page 55 of 62

VPE+ Application Reporting Interface

E* VPE+ Report Interface (TReportinterface) Text Rotation

VPE allows text to be rotated at 90 degree intervals. To rotate and justify a single line of text to any angle, VPE+ provides the method
PrintRotatedText.

In principle, VPE+ writes the text into an enhanced metafile (EMF), rotates this EMF and then draws the result into the VPE document according
to the justification parameters supplied. The entire process is managed with (small) memory streams - no on-disk files are created.

You can specify a font style or offset the (x, y) placement of the text (in addition to justification). Use the procedure BumpRotationBox to specify

a frame, shading, or extra left and right text margins within the text box.

Some output examples are included here:

"he
o0,
Sh (/Se

procedure PrintRotatedText(
Text: string;
AngleDegrees: Double;
AJustify: TPrintJustify;

ALineMetric: TLineMetric;

AlignToX, AlignToY: Double;
ATextStyle: TTextStyle = tsNormal;
OffsetX: Double = 0;

OffsetY: Double = 0;

procedure BumpRotationBox(
APenColour: TColor = cINone;
ABrushColour: TColor = cINone;
AlLeftTextMargin: Double = 0;
ARightTextMargin: Double = 0;

procedure ClearRotationBoxBumps;

1

Rotate
Rotate

Rotg fo

prints a line of rotated text

text to rotate and print

angle of rotation in degrees (clockwise from horizontal = 0 degrees)

alignment of text line relative to AlignTo point along the line of text (“horizontal")
jLeft, jCentre, jRight

alignment of text line relative to AlignTo point perpendicular to the line of text ("vertical")
ImFontTop, ImFontMiddle, ImFontBaseline, ImFontBottom,
ImLineTop, ImLineMiddle, ImLineBottom

point (AlignToX, AlignToY) about which the text line should be aligned

font style to apply (default = tsNormal)

horizontal offset for text line in addition to AJdustify (negative left, positive right)

vertical offset for text line in addition to ALineMetric (negative up, positive down)

specifies text box settings for an item of rotated text

colour of text box frame (NA = default = cINone = no box frame)

colour of text box shading (NA = default = cINone = no box shading)

left text margin (default = 0) between left frame line (if any) and text

right text margin (default = 0) between right frame line (if any) and text

clears any bumps applied using BumpRotationBox

a\?}‘@a

8\9\08

ojejoy 9D

Page 56 of 62

VPE+ Application Reporting Interface

&Y VPE+ Report Interface (TReportinterface) Colour Shades

returns a colour adjusted to a lighter shade
base colour to lighten (cINone is returned if cINone is passed)
percentage value to lighten colour by

procedure ColourPercent(
BaseColour: TColor;
PercentColour: Smallint): TColor;

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

clBlack

clMaroon

clGreen

clOlive

cINavy

clPurple

clTeal

clGray

clSilver

clRed

clLime

clBlue

clFuchsia

clAqua

clLtGray

CIDkGray _

clWhite

clMoneyGreen

cISkyBlue

clCream

Page 57 of 62

VPE+ Application Reporting Interface

”@5 Categorical Index

This index lists only VPE+ methods, events and properties. There are a great deal more associated with VPE itself. Consult the comprehensive

VPE documentation for more information.

Note also, that some items appear in more than one category below, as appropriate. The listing is intended as a brief indication and reminder of
available features, and as a cue to finding related items.

Arrows

ArrowHeadDepth property ArrowTailDepth property 54 ScaleArrow procedurec.eeuen.
ArrowHeadShape property .. ArrowTailShape property 54 SetArrowDimensions procedure.........
ArrowHeadWidth property ArrowTailWidth property 54 SetDefaultArrow procedure.................
ArrowStemWidth property DrawArrow procedure 54

Bands & Paper

BandCentreXPos function Fontindex propertycccoevveviennnnns 46 ResetBand procedure 46
BandCentreYPos function Height property........ccooooiiiiiiiinn. 46 ResetBandBoundaries procedure.......... 46
BandHeight function MinHeight propertyc.cooeevieinnne. 46 ResetLetterfootHeight procedure.......... 46
BandHeightLeft function.... MinLines propertycocvviiiinennn. 46 ResetLetterheadHeight procedure 46
BandLeft property PaperBottom function........................ 43 ResetPageFooterHeight procedure....... 46
BandRight propertyc.coooeuennen PaperCentreXPos function 44 ResetPageHeaderHeight procedure...... 46
BandTop propertycocevevvninnnnn. PaperCentreYPos function 44 ResetRemittanceHeight procedure 46
BandTop property PaperHeight propertyc...... 44 SetBandBounds procedure.................
BandWidth function PaperLeft functioncooeenen. 43 SetPaperMargins procedure

BandWidthLeft function PaperMarginBottom property 43 SetPaperSize (overload #1) procedure .. 45
BumpPaperMargins procedure 45 PaperMarginLeft property................... 43 SetPaperSize (overload #2) procedure .. 45
ClearPaperMarginBumps procedure 45 PaperMarginRight property 43 Tablndex propertycccoeevevevenenene. 46
DetailFrame propertyc.c.ccoeeenen. PaperMarginTop property................... 43 UselLetterfootHeight property 46
DisableRemittance procedure ... PaperPrintHeight function................... 44 UselLetterheadHeight property 46
EnableRemittance function PaperPrintHeightLeft function.............. 44 UsePageFooterHeight property 46
EnoughBandHeight function PaperPrintWidth function 44 UsePageHeaderHeight property 46
EnoughBandLines function PaperPrintWidthLeft function............... 44 UseRemittance property 45
EnoughBandWidth function PaperRight function 43 UseRemittanceHeight property 45
EnoughPaperPrintHeight function......... 44 PaperTop function..................ooieies 43 UseRemittanceHeight property 46
EnoughPaperPrintWidth function.......... 44 PaperWidth propertycoccoveennns 44

EnoughSpaceForRemittance function ... 45 RemittanceHeight property 45

Column Frame

AddColumn procedure 53 ColumnLeft function.................ocoeeins 52 OnColumnBefore event 52
AddColumns procedure 53 ColumnLinesLeft function................... 52 OnColumnFrameAfter event 52
AddColumnWidth procedure 53 ColumnRight function........................ 52 OnColumnFrameBefore event.............. 52
ClearColumnList procedure 53 ColumnWidth function 52 OnColumnFrameRestart event52
ColuColumnindexmnFrameTop property 53 EnoughColumnHeight function 52 PlaceColumnFrame procedure53
ColumnCentreXPos function 52 EnoughColumnLines function.............. 52 PrintColumnText procedure53
ColumnCount function....................... 52 Execute procedurecoceeiennnns 53 ReportWriter property..........c.cceeeeinnns 53
ColumnFrameBottom property............. 53 NextColumn procedure...................... 53 SetColumnFrameBottom procedure....... 53
ColumnFrameTop property OnColumnevent..........covvivienneninnn. 52 SetColumnFrameHeight procedure....... 53
ColumnHeightLeft function OnColumnAfter event..............coeueeins 52 TColumnTextMode type..................... 53
Custom Formats

CustomFormatCount property 42 OnCustomFormatGenerate event......... 42 SelectedCustomFormatindex property ... 42
CustomFormatDefaultindex property 42 OnCustomFormatQuery event............. 42

CustomFormatExt function 42 QueryCustomFormat procedure........... 42

Detail Frame

BandBodyFooter property 49 OnBodyBefore event......................... 49 OnRowBefore event 49
BandBodyHeader property 49 OnBodyFooterevent................ccouen.. 49 OnTripPageAfterevent...................... 46
BandRow propertycccoiiiiiinnn. 49 OnBodyHeader event........................ 49 OnTripPageBefore event 46
Execute procedurec.coceeuinnnnn. 49 ONROW €VENTviviiiiiiiiiiiieieaeaan 49 PrintBodyFooter procedure................. 49
OnBodyAftereventcccoevvienens 49 OnRowAfter event............cccoeeveninnnns 49 PrintBodyHeader procedure................ 49

Page 58 of 62

VPE+ Application Reporting Interface

”@5 Categorical Index

Devices

ActiveBinID function.......................... DefaultDevicelndex property 26 DeviceName property

ActiveBinIndex function DefaultDeviceSettings procedure 26 DrawHLine procedure
AssignBinList procedure Device function.............ccoooviiiiiinnnn. 26 FinaliseDevicelList procedure 26
AssignDevicelList procedure................. 26 DeviceCollate property 26 GetBinID function..................ocoeeenn 27
BinIDByIndex function DeviceCopies property 26 InitialiseDeviceList procedure............... 26
BinindexByID function DeviceCount property 26 ReportDevicesExist function 26
BinNameByID function DeviceDuplex property 26 SelectDevice function ... 26
BinNameByIndex function 27 Devicelndex function......................... 26 SupportCollate property 27
CanCollate functioneee 26 Devicelndex propertyoceeeee. 27 SupportDuplex property 27
CollateMethod property 26 DeviceList propertyccccvveenennn. 26 SupportOrientation property 27
CopyLimit propertycccoeoiiniiens 27 DeviceName function 26 SwitchDevice function 26
Drawing

ColourPercent procedure 57 DrawHLine procedure 15 DrawTabBoxes procedure

DrawArrow procedure ... Drawlmage procedure 17 DrawVLine procedure

DrawBox procedure....... DrawLine procedureccoeenee. 15 FinishTabBoxes procedure

DrawEllipse procedure DrawTabBox procedure 32

Fonts & Font Metrics

AlignToCursorFont procedure 21 FontMiddle property.............coevenenen. 19 RenderedLineHeight function 19
AlignToLineFont procedure................. 21 FontSet procedurec.cooeieennn. 13 ResetLineFont procedure................... 19
AlignToSavedFont procedure............... 21 FontSetName procedure.................... 13 ResetlLineHeight procedure 19
AlignToYPos procedure FontSetSize procedure 13 RTFLineHeight function 36
AscentHeight function FontSizeFitHeight function.................. 20 TextWidth function 19
CapitalHeight function FontSizeFitWidth function................... 20 TLineMetric type 19
CursorHome procedure FontTop propertyccoovvvieiiiiininenns 19 XPOS ProOpPertyovvvviiiiiiiiiieeeenens 19
CursorLeft procedureccooveuens LineBottom propertyccoeeueee. 19 YPOS PrOPertycuvvvveiiiiiiiiineiaaans 19
CursorTo procedure...... LineHeight function........................... 19 YPosAlignToCursorFont function 21
CursorTop procedure ... LineMiddle propertycccoviienannn. 19 YPosAlignToLineFont functi 21
DescentHeight function.. LineTop property.......ccceeeeeveveenenennnnns 19 YPosAlignToSavedFont function 21
FontBaseline property PopFont procedure................ccooeenee. 13 YPosAlignToYPos function 21
FontBottom propertyc.c.ccevuenens PushFont procedurecoeue. 13

Images

ClearlmageList procedure 16 ImageAspect function........................ 17 RetainlmagelList procedure................. 16
CreatelmageFile procedure 17 ImageAtindex function....................... 17 TimageKind type........ccoovvviiiiiinininns 16
CreateVPEStream function LocklmageList procedure 16 TImageMarker type .17
Drawlmage procedure....................... Registerimage function...................... 16 UnlockimagelList procedure 17
FlushimageCache procedure 16 RetainlimageCache procedure 17

General Interface

ActiveReportFolder function................. 10 ExecuteReport procedure................... 22 PrintSystemLetterfoot procedure........... 11
ActiveTempFolder function 10 ExecuteReportRun procedure 25 PrintSystemLetterhead procedure 11
AsReportUnits function...................... HideStatusForm procedure................. 12 PrintSystemPageFooter procedure........ 11
AsVPEUnits function......................... LetterfootEnabled property 10 PrintSystemPageHeader procedure....... 11
BatchClose procedure... LetterfootEnabled property 37 PrintSystemPageHeader procedure 11
Batchindex property...........c.cocoeuennne. LetterfootHeight property 10 RemittanceHeight property 10
Batching property............cocoiiiiiiinnn. LetterheadEnabled property................ 10 ReportBatch property 24
BatchltemClose procedure LetterheadEnabled property................ 37 ShowStatusForm procedure 12
BatchOutput function LetterheadHeight property 10 SystemBatchFileName function 24
BatchOutputPrompt function ... OnGetReportFolder event 10 TagPreview property 10
BatchSetup procedure....................... OnGetTempFolder event 10 TagSetup propertyocoevevevvnninennns 10
ConvertUnits function........................ OnSystemLetterfoot procedure. 11 TagStatus propertyc.cooevveeinennns 10
DefaultFixedBandEnabled property....... 10 OnSystemLetterhead procedure 11 TBatchltem typeccovieiiiiiiiiininnns 24
DefaultFixedBandHeights property 10 OnSystemPageFooter procedure 11 TDefaultBandState type..................... 10
DefaultFonts property........................ 10 OnSystemPageHeader procedure......... 11 TitleSystem property 10
DefaultPageFooterStamp property 10 OverridePreview event 12 TReportSetupMode type 22
DefaultPaperMargins property 10 OverrideSetup eventccceevevennnn. 11 TUNIS tYPE .o 14
DefaultReportDescription property........ 10 OverrideStatus eventne 12 Units propertycoevvveinieiinininenannn. 11
DefaultReportFolder property 10 PageFooterEnabled property 10 UseEmbeddedFlagParser property 11
DefaultTempFolder property PageFooterEnabled property 37 UserBatchFileName function............... 24
DefaultTitleSetup property PageFooterHeight property................. 10 VPELicenseKeyl property.................. 11
DefaultTitleStatus property PageHeaderEnabled property 10 VPELicenseKey?2 property.................. 11
DisplayStatus procedure PageHeaderEnabled property 37 VPEUNItS property.........cccoevvvevenincne. 11
ExecuteBatchReport procedure 23 PageHeaderHeight property 10

Page 59 of 62

VPE+ Application Reporting Interface

”@5 Categorical Index

Label Frame

AutoPageSetup property 51 Labellndex propertyc.coceeiennnnn. 51 LabelStartColumn property 51
BandLabel property LabelOrder property...........cocoveennnnn. 51 LabelStartRow property
DrawLabelExtents property................. 51 LabelPageBottom property 50 LabelWidth property.............c.cooeeenee.
Execute procedurecoceiennn. 50 LabelPageHeight property 50 OnLabelevent.............c.cooviiiiiinne.
LabelBorder propertycc.cceeeee. 51 LabelPagelndex property 51 OnLabelAftereventccoceeins
LabelBorderBackgroundColour property 51 LabelPageLeft property 50 OnLabelBefore eventcc.e.e.
LabelBorderCornerRadius property....... 51 LabelPageRight property 50 OnPageAfter event
LabelBorderMargins property 51 LabelPageTop property 50 OnPageBefore event
LabelBorderPenColour property 51 LabelPageWidth property 50 OnReportAfter eventc.ocoeeene.
LabelBorderPenWidth property 51 LabelPaperOrientation property 51 OnReportBefore event

LabelColumn property LabelRow propertycocveiiinnnn. 51 SpacingHorizontal property................. 50
LabelColumns property.. LabelRows property..........c.cocevenennn. 51 SpacingVertical property
LabelHeight property...............c..oceee. LabelSkipCount property.................... 51 TextMargins propertyc.ceveuene.
Master Frame

BandBodyFooter property 49 OnBodyHeader event........................ 49 OnRowAfterevent............ccceevviinne. 49
BandBodyHeader property 49 OnDetailAfter eventc.oeeeene. 49 OnRowBefore event 49
BandGroupFooter property 49 OnDetailBefore event........................ 49 OnTripPageAfterevent...................... 46
BandGroupHeader property 49 OnGroupAfterevent.............ccceeuenene. 49 OnTripPageBefore event 46
BandRow propertycocovevuinnnnn. 49 OnGroupAfterLastevent 49 PrintBodyFooter procedure..... ... 49
DetailFrame propertycc.cc.eeee. OnGroupBefore event 49 PrintBodyHeader procedure.... ... 49
Execute procedureoooeenn OnGroupBeforeFirst event.................. 49 PrintGroupFooter procedure 49
OnBodyAftereventcccovvvienens OnGroupFooterevent 49 PrintGroupHeader procedure 49
OnBodyBefore event... OnGroupHeader event 49

OnBodyFooter event................cc...c.... OnRow event............coevviiiiiiiiinnns 49

Page Frame

BandBodyFooter property OnBodyHeader event........................ 48 OnReportHeader event...................... 48
BandBodyHeader property .. OnBodyTitle event...............c.oooeinene. 48 OnRow event............... 48
BandBodyTitle property OnDetailAftereventcccceevennne. 48 OnRowAfter event 48
BandGroupFooter property OnDetailBefore event....................... 48 OnRowBefore eventocoeeii 48
BandGroupHeader property OnGroupAfter event.............cceeevvnene. 48 OnTripPageAfterevent...................... 46
BandLetterfoot property OnGroupAfterLastevent 48 OnTripPageBefore event 46
BandLetterhead property OnGroupBefore event 48 PrintBodyFooter procedure..... 48
BandPageFooter property ... OnGroupBeforeFirst event.................. 48 PrintBodyHeader procedure.... 48
BandPageHeader property OnGroupFootereventccoeeuen. 48 PrintGroupFooter procedure 48
BandRemittance property................... OnGroupHeader event 48 PrintGroupHeader procedure 48
BandRow property OnLetterfoot eventcccovvvvinnns 48 RemittanceHeight property45
DetailFrame property OnlLetterhead event..................coeeeee 48 ReportFooter property 48
DisableRemittance procedure OnPageAfterevent..............cceeuenene. 48 ReportHeader property 48
EnableRemittance function................. 45 OnPageBefore eventc...... 48 ResetlLetterfootHeight procedure.......... 46
EnoughSpaceForRemittance function ... 45 OnPageFooterevent..............c.cceueee. 48 ResetLetterheadHeight procedure 46
Execute procedurecccoiiennns OnPageHeaderevent 48 ResetPageFooterHeight procedure....... 46
IsTopOfPageBody function .. OnRemittance eventcoceenens 48 ResetPageHeaderHeight procedure...... 46
OnBodyAfter event............. OnReportAfter eventc.c.oeeeene. 48 ResetRemittanceHeight procedure 46
OnBodyBefore event................cceeune OnReportBefore event....................... 48

OnBodyFooter event..............ccoeeveuens OnReportFooter event....................... 48

Page Numbering

AddPageNoPos procedure 13 InsertPageNoPos procedure 13 RetrievePageNoPos function 13
AddPageNoPosVoid procedure 13 InsertPageNoPosVoid procedure 13

DeletePageNoPos procedure. 13 NumberPages procedure 13

Position & Cursor

AdvanceXPos procedure 19 CursorTop procedureccoeuenens 19 PushPos procedurec.c.c....e. 14
AdvanceYPos procedure LineSpaceBottom property 30 SavedXPos function 14
AlignToCursorFont procedure 21 LineSpaceTop propertycccoenee. 30 SavedYPos function 14
AlignToLineFont procedure................. 21 MaxSavedXPos function 14 SetLineSpacing procedure 30
AlignToSavedFont procedure............... 21 MaxSavedYPos function 14 XPOS Propertyccooevveiiiiiiinininne. 19
AlignToYPos procedure MinSavedXPos function..................... 14 YPOS Propertyo.eevvneiniinennaninene. 19
BandCentreXPos function ... MinSavedYPos function..................... 14 YPosAlignToCursorFont function 21
BandCentreYPos function NewLine procedurecccceeenne. 19 YPosAlignToLineFont function............. 21
ClearLineSpacing procedure NewPage procedurec...c.eee. 19 YPosAlignToSavedFont function........... 21
CursorHome procedure PaperCentreXPos function 44 YPosAlignToYPos function 21
CursorLeft procedure PaperCentreYPos function 44

CursorTo procedure............ccoeuvueunenens PopPos procedurecocoeeinnn. 14

Page 60 of 62

VPE+ Application Reporting Interface

”@5 Categorical Index

Printing

BumpRotationBox procedure 56 PrintColumnText procedure 53 PrintPos procedure...................oceeeee. 29
ClearRotationBoxBumps procedure 56 PrintGroupFooter procedure 49 PrintRotatedText procedure56
PrintBodyFooter procedure................. PrintGroupFooter procedure 48 PrintSystemLetterfoot procedure........... 11
PrintBodyFooter procedure................. PrintGroupHeader procedure 49 PrintSystemLetterhead procedure 11
PrintBodyFooter procedure................. PrintGroupHeader procedure 48 PrintSystemPageFooter procedure 11
PrintBodyHeader procedure................. PrintHeight procedure 35 PrintTab procedure........................... 32
PrintBodyHeader procedure.... PrintLine procedurec.coeneen 29 PrintTabSet procedure 32
PrintBodyHeader procedure................. PrintLines procedure......................... 35 TextWidth functionoeee. 19
Report Writer (TReportWriter)

AbortReason propertycocveeeees 28 OnSetupAftereventcccevevinene. 41 ReportStatus propertyc.ccoevneens 28
AbortReasonMessage function 28 OnSetupBefore event........................ 41 ReportSubTitle property..................... 39
AbortReport procedure 28 OnSetupValidate event...................... 41 ReportTag propertycoeeveveeneennns 39
AbortReportRun procedure.................. 28 OnStreamBefore event...................... 40 ReportTitle property 39
AddPageNoPos procedure 13 OnStreamOutput event...................... 40 ReportTitleGroupBox property 39
AddPageNoPosVoid procedure 13 OptionAllow procedure 38 RetainVPESourceFile procedure.......... 39
ClearRunError procedure 28 OptionAllowed property 38 RetrievePageNoPos function 13
CustomFormatCount property 37 OptionDisallow procedure 38 RunAborted function 28
CustomFormatDefaultindex property..... 37 OptionDisallowed property.................. 38 RunStatus propertyc.coeeeeiennnn. 28
CustomFormatExt function .. OptioNS Propertyo.vevevenenvieneninnnns 38 SelectedCustomFormatindex property... 39
DefaultFonts property.............. OptionsAllow procedure..................... 38 SendFileByEmail procedure................ 39
DeletePageNoPos procedure............... 13 OptionsDisallow procedure.................. 38 SendSelectedFilesByEmail procedure ... 39
EnablePageFooterTitle property........... 37 OutputDefaultFileName property 37 TBandState typec.coeovvvvininneninene.
EnablePageHeaderSubTitle property 37 OutputDefaultFormat property 37 TBatchOutputAction type
EnablePageHeaderTitle property 37 OutputFileName property 38 TFileOutputFormat type
FixedBandEnabled property................ 37 OutputFormats property..................... 37 TitleSetup property
InsertPageNoPos procedure 13 OverrideSetup eventccceeevenene. 41 TitleStatus propertyc.ccoevvieininnns
InsertPageNoPosVoid procedure 13 PageFooterStamp property................. 38 TPaperOrientation type......................
NumberPages procedure 13 PageFooterStampDated property 38 TPreviewConfigureState type......
OnConfigure event PageFooterStamped property 38 TReportAbort type.......

OnFileOutput event PageFooterTitle property 38 TReportOption type
OnGenerate event...........ccoeeveinnnne. PageHeaderSubTitle property 38 TReportStatus type.........ocvvvviiieinennns
OnGenerateEnd event PageHeaderTitle property 38 TRUNADOIt type ...
OnGenerateException event............... 40 PaperOrientation property 38 TRunStatus typeccoevvveeen
OnGenerateStartevent...................... 40 PreviewWindow property 38 UsePageFooterTitle property

OnPageEnd event................ccocoevnnnne 40 QueryCustomFormat procedure............ 38 UsePageHeaderSubTitle property 39
OnPageStartevent...............c.oeeveee. 40 ReportAborted function...................... 28 UsePageHeaderTitle property 39
OnPreviewConfigure event................. 41 ReportDescription property 38 UsePageTitles property 39
OnReportFileName event................... 40 ReportFileNameConfirmed property 38 ValidateSetup function 39
OnSendEmail event...............oooeeeenns 41 ReportOptionGroupBox property 38

RTF On the Fly

RTFClearTab procedure RTFLine functionc.ooeoiieinnns 36 RTFStyle functionccocoeienes 36
RTFClearTabs procedure.... RTFLiteral functioncccoeunee. 36 RTFTab function............ 36
RTFCodeGroup function RTFParagraph function 36 RTFTabBullet function....................... 36
RTFEnclose function......................... RTFSetTab procedure....................... 36

Tabs

ActiveTablndex property ClearTabTextBumps procedure 33 SkipTab procedurec.cccoevinnnnn 32
ActiveTabList propertyc.coeues DrawTabBox procedure 32 SynchToLineTab procedure................ 35
BumpTabBox procedure DrawTabBoxes procedure 32 TabBoxLineColour property 31
BumpTabBrush procedure... FinishTabBoxes procedure.................. 32 TabBoxLineStyle property 31
BumpTabColour procedure.. FreeTabBumper procedure................. 33 TabCentre function............. 33
BumpTabJustify procedure GetTab function.............oovviiininn. 33 TabEnd function33
BumpTabMargins procedure GetTabList functione. 33 TabLeftMargin function...................... 33
BumpTabPenStyle procedure.............. HoldTabBumps procedure................... 33 TabRightMargin function 33
ClearLineTabs procedure......... PopTablList procedure 32 TabStart function 33
ClearSavedTabLists procedure.. PrintTab procedure....................oeee. 32 TabTextCentre function 33
ClearTabBoxBumps procedure..... PrintTabSet procedure 32 TabTextEnd function.........33
ClearTabBrushBump procedure........... PushTablList procedure...................... 32 TabTextStart function........................ 33
ClearTabJustifyBump procedure ResetTabLine procedure.................... 33 TabTextWidth function....................... 33
ClearTabListStack procedure SetLineTab function.......................... 31 TabWidth function ... 33
ClearTabMarginBump procedure 33 SetTabBox procedure 31

ClearTabs procedurecccoveuens 33 SetTabBoxes procedure 31

Page 61 of 62

VPE+ Application Reporting Interface

”@5 Categorical Index

Text Blocks

BlockHeight function 35
BlockHeightLeft function 35
BlockLeft propertycoooviiiiiinnn, 34
BlockLineCount function 35
BlockLineCountLeft function 35
BlockRendered function..................... 35
BlockRight propertyc.cccoeeuene. 34
BlockTextWidth function 35
BlockWidth function 35
CloseBlock procedurec..... 34
Create TRTFBlock constructor 36
Create TTextBlock constructor 34

CurrentLine procedure....................... 35
CurrentLine propertycccoooeuvenns 35
EnoughTextWidth function.................. 35
ISEmpty function ...t 35
IsFinished functionc.e. 35
Justify propertycooooeiiiiiiiiins 34
OpenBlock procedure 34
OpenBlockFromFile procedure 34
OpenBlockFromStream procedure 34
PrintHeight procedure 35
PrintLines procedure......................... 35
RenderBlock procedure 34

RenderHeight procedure..................... 35
RenderLines procedure 35
ReportWriter property...............c........ 34
ResetBlock procedure 34
SynchToLineTab procedure................. 35
TextLeft function ... 35
TextLeftMargin property..................... 34
TextRight functionooeeae. 35
TextRightMargin property 34
TextStyle propertyc.cocovveveveninene. 34

Page 62 of 62

